@phdthesis{Leiser2021, author = {Leiser, Rico}, title = {Biogeochemical processes governing microplastic transport in freshwater reservoirs}, doi = {10.25932/publishup-52024}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520240}, school = {Universit{\"a}t Potsdam}, pages = {ix, 143}, year = {2021}, abstract = {The presented study investigated the influence of microbial and biogeochemical processes on the physical transport related properties and the fate of microplastics in freshwater reservoirs. The overarching goal was to elucidate the mechanisms leading to sedimentation and deposition of microplastics in such environments. This is of importance, as large amounts of initially buoyant microplastics are found in reservoir sediments worldwide. However, the transport processes which lead to microplastics accumulation in sediments, were up to now understudied. The impact of biofilm formation on the density and subsequent sedimentation of microplastics was investigated in the eutrophic Bautzen reservoirs (Chapter 2). Biofilms are complex microbial communities fixed to submerged surfaces through a slimy organic film. The mineral calcite was detected in the biofilms, which led to the sinking of the overgrown microplastic particles. The calcite was of biogenic origin, most likely precipitated by sessile cyanobacteria within the biofilms. Biofilm formation was also studied in the mesotrophic Malter reservoir. Unlike in Bautzen reservoir, biofilm formation did not govern the sedimentation of different microplastics in Malter reservoir (Chapter 3). Instead autumnal lake mixing led to the formation of sinking aggregates of microplastics and iron colloids. Such colloids form when anoxic, iron-rich water from the hypolimnion mixes with the oxygenated epilimnetic waters. The colloids bind organic material from the lake water, which leads to the formation of large and sinking iron-organo flocs. Hence, iron-organo floc formation and their influence on the buoyancy or burial of microplastics into sediments of Bautzen reservoir was studied in laboratory experiments (Chapter 4). Microplastics of different shapes (fiber, fragment, sphere) and sizes were readily incorporated into sinking iron-organo flocs. By this initially buoyant polyethylene microplastics were transported on top of sediments from Bautzen reservoir. Shortly after deposition, the microplastic bearing flocs started to subside and transported the pollutants into deeper sediment layers. The microplastics were not released from the sediments within two months of laboratory incubation. The stability of floc microplastic deposition was further investigated employing experiments with the iron reducing model organism Shewanella oneidensis (Chapter 5). It was shown, that reduction or re-mineralization of the iron minerals did not affect the integrity of the iron-organo flocs. The organic matrix was stable under iron reducing conditions. Hence, no incorporated microplastics were released from the flocs. As similar processes are likely to take place in natural sediments, this might explain the previous described low microplastic release from the sediments. This thesis introduced different mechanisms leading to the sedimentation of initially buoyant microplastics and to their subsequent deposition in freshwater reservoirs. Novel processes such as the aggregation with iron-organo flocs were identified and the understudied issue of biofilm densification through biogenic mineral formation was further investigated. The findings might have implications for the fate of microplastics within the river-reservoir system and outline the role of freshwater reservoirs as important accumulation zone for microplastics. Microplastics deposited in the sediments of reservoirs might not be transported further by through flowing river. Hence the study might contribute to better risk assessment and transport balances of these anthropogenic contaminants.}, language = {en} }