@article{ZhangPaijmansChangetal.2013, author = {Zhang, Hucai and Paijmans, Johanna L. A. and Chang, Fengqin and Wu, Xiaohong and Chen, Guangjie and Lei, Chuzhao and Yang, Xiujuan and Wei, Zhenyi and Bradley, Daniel G. and Orlando, Ludovic and O'Connor, Terry and Hofreiter, Michael}, title = {Morphological and genetic evidence for early Holocene cattle management in northeastern China}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms3755}, pages = {7}, year = {2013}, abstract = {The domestication of cattle is generally accepted to have taken place in two independent centres: around 10,500 years ago in the Near East, giving rise to modern taurine cattle, and two millennia later in southern Asia, giving rise to zebu cattle. Here we provide firmly dated morphological and genetic evidence for early Holocene management of taurine cattle in northeastern China. We describe conjoining mandibles from this region that show evidence of oral stereotypy, dated to the early Holocene by two independent C-14 dates. Using Illumina high-throughput sequencing coupled with DNA hybridization capture, we characterize 15,406 bp of the mitogenome with on average 16.7-fold coverage. Phylogenetic analyses reveal a hitherto unknown mitochondrial haplogroup that falls outside the known taurine diversity. Our data suggest that the first attempts to manage cattle in northern China predate the introduction of domestic cattle that gave rise to the current stock by several thousand years.}, language = {en} } @article{NiKliemLinetal.2015, author = {Ni, Lei and Kliem, Bernhard and Lin, Jun and Wu, Ning}, title = {Fast magnetic reconnection in the solar chromosphere mediated by theplasmoid instability}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/79}, pages = {16}, year = {2015}, abstract = {Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of similar to 10(6)-10(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range similar to 0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches approximate to 40 km s(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to similar to 8 x 10(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to similar to 30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.}, language = {en} } @misc{WuGlebeBoeker2015, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles}, series = {Polymer Chemistry}, volume = {6}, journal = {Polymer Chemistry}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00525f}, pages = {5143 -- 5184}, year = {2015}, abstract = {In recent years, core/shell nanohybrids containing a nanoparticle core and a distinct surrounding shell of polymer brushes have received extensive attention in nanoelectronics, nanophotonics, catalysis, nanopatterning, drug delivery, biosensing, and many others. From the large variety of existing polymerization methods on the one hand and strategies for grafting onto nanoparticle surfaces on the other hand, the combination of grafting-from with controlled radical polymerization (CRP) techniques has turned out to be the best suited for synthesizing these well-defined core/shell nanohybrids and is known as surface-initiated CRP. Most common among these are surface-initiated atom transfer radical polymerization (ATRP), surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, and surface-initiated nitroxide-mediated polymerization (NMP). This review highlights the state of the art of growing polymers from nanoparticles using surface-initiated CRP techniques. We focus on mechanistic aspects, synthetic procedures, and the formation of complex architectures as well as novel properties. From the vast number of examples of nanoparticle/polymer hybrids formed by surface-initiated CRP techniques, we present nanohybrid formation from the particularly important and most studied silica nanoparticles, gold nanocrystals, and proteins which can be regarded as bionanoparticles.}, language = {en} } @article{WuGlebeBoeker2016, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of Hybrid Silica Nanoparticles Densely Grafted with Thermo and pH Dual-Responsive Brushes via Surface-Initiated ATRP}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b01792}, pages = {9586 -- 9596}, year = {2016}, language = {en} } @article{WuGlebeBoeker2017, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Fabrication of Thermoresponsive Plasmonic Core-Satellite Nanoassemblies with a Tunable Stoichiometry via Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization from Silica Nanoparticles}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201700092}, pages = {10}, year = {2017}, abstract = {This work presents a fabrication of thermoresponsive plasmonic core-satellite nanoassemblies. The structure has a silica nanoparticle core surrounded by gold nanoparticle satellites using thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains as scaffolds. The thiol-terminated PNIPAM shell is densely grafted on the silica core via surface-initiated reversible addition-fragmentation chain transfer polymerization and used to anchor numerous gold nanoparticle satellites with a tunable stoichiometry. Below and above lower critical solution temperature, the chain conformation of PNIPAM reversibly changes between swollen and shrunken state. The reversible change of the polymer size varies the refractive index of the local medium surrounding the satellites and the distance between them. The two effects together lead to the thermoresponsive plasmonic properties of the nanoassemblies. Under different satellite densities, two distinctive plasmonic features appear.}, language = {en} }