@article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @misc{deVeraAlawiBackhausetal.2019, author = {de Vera, Jean-Pierre Paul and Alawi, Mashal and Backhaus, Theresa and Baque, Mickael and Billi, Daniela and Boettger, Ute and Berger, Thomas and Bohmeier, Maria and Cockell, Charles and Demets, Rene and de la Torre Noetzel, Rosa and Edwards, Howell and Elsaesser, Andreas and Fagliarone, Claudia and Fiedler, Annelie and Foing, Bernard and Foucher, Frederic and Fritz, J{\"o}rg and Hanke, Franziska and Herzog, Thomas and Horneck, Gerda and H{\"u}bers, Heinz-Wilhelm and Huwe, Bj{\"o}rn and Joshi, Jasmin Radha and Kozyrovska, Natalia and Kruchten, Martha and Lasch, Peter and Lee, Natuschka and Leuko, Stefan and Leya, Thomas and Lorek, Andreas and Martinez-Frias, Jesus and Meessen, Joachim and Moritz, Sophie and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Ott, Sieglinde and Pacelli, Claudia and Podolich, Olga and Rabbow, Elke and Reitz, G{\"u}nther and Rettberg, Petra and Reva, Oleg and Rothschild, Lynn and Garcia Sancho, Leo and Schulze-Makuch, Dirk and Selbmann, Laura and Serrano, Paloma and Szewzyk, Ulrich and Verseux, Cyprien and Wadsworth, Jennifer and Wagner, Dirk and Westall, Frances and Wolter, David and Zucconi, Laura}, title = {Limits of life and the habitability of Mars}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1897}, pages = {145 -- 157}, year = {2019}, abstract = {BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.}, language = {en} } @article{deVeraBoettgerdelaTorreNoetzeletal.2012, author = {de Vera, Jean-Pierre Paul and B{\"o}ttger, Ute and de la Torre N{\"o}tzel, Rosa and Sanchez, Francisco J. and Grunow, Dana and Schmitz, Nicole and Lange, Caroline and H{\"u}bers, Heinz-Wilhelm and Billi, Daniela and Baque, Mickael and Rettberg, Petra and Rabbow, Elke and Reitz, G{\"u}nther and Berger, Thomas and M{\"o}ller, Ralf and Bohmeier, Maria and Horneck, Gerda and Westall, Frances and J{\"a}nchen, Jochen and Fritz, J{\"o}rg and Meyer, Cornelia and Onofri, Silvano and Selbmann, Laura and Zucconi, Laura and Kozyrovska, Natalia and Leya, Thomas and Foing, Bernard and Demets, Rene and Cockell, Charles S. and Bryce, Casey and Wagner, Dirk and Serrano, Paloma and Edwards, Howell G. M. and Joshi, Jasmin Radha and Huwe, Bj{\"o}rn and Ehrenfreund, Pascale and Elsaesser, Andreas and Ott, Sieglinde and Meessen, Joachim and Feyh, Nina and Szewzyk, Ulrich and Jaumann, Ralf and Spohn, Tilman}, title = {Supporting Mars exploration BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology}, series = {Planetary and space science}, volume = {74}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2012.06.010}, pages = {103 -- 110}, year = {2012}, abstract = {The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions.}, language = {en} } @book{FuhrmannSchubarthSchulzeReicheltetal.2019, author = {Fuhrmann, Michaela and Schubarth, Wilfried and Schulze-Reichelt, Friederike and Mauermeister, Sylvi and Seidel, Andreas and Hartmann, Nina and Erdmann, Melinda and Apostolow, Benjamin and Wagner, Laura and Berndt, Sarah and Wippermann, Melanie and Ratzlaff, Olaf and Lumpe, Matthias and Kirjuchina, Ljuba and Rost, Sophia and Zurek, Peter Paul and Faaß, Marcel and Schellhorn, Sebastian and Frank, Mario and Kreitz, Christoph and Wagner, Nelli and Jenneck, Julia and Kleemann, Katrin and Vock, Miriam and Schr{\"o}der, Christian and Erdmann, Kathrin and Koziol, Matthias and Meißner, Marlen and Dibiasi, Anna and Unger, Martin and Piskunova, Elena V. and Bahmutskiy, Andrey E. and Bessonova, Ekatarina A. and Borovik, Ludmila K.}, title = {Alles auf Anfang!}, series = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, journal = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, number = {4}, editor = {Schubarth, Wilfried and Mauermeister, Sylvi and Schulze-Reichelt, Friederike and Seidel, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-452-4}, issn = {2192-1075}, doi = {10.25932/publishup-42296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422965}, publisher = {Universit{\"a}t Potsdam}, pages = {373}, year = {2019}, abstract = {Im Zuge der Bologna-Reform ist an Hochschulen vieles in Bewegung gekommen. Studium und Lehre sind st{\"a}rker ins Blickfeld ger{\"u}ckt. Dabei kommt der Studieneingangsphase besondere Bedeutung zu, werden doch hier die Weichen f{\"u}r ein erfolgreiches Studium gestellt. Deshalb ist es verst{\"a}ndlich, dass die Hauptanstrengungen der Hochschulen auf den Studieneingang gerichtet sind - ganz nach dem Motto: „Auf den Anfang kommt es an!". Konsens herrscht dahingehend, dass der Studieneingang neu zu gestalten ist, doch beim „Wie?" gibt es unterschiedliche Antworten. Zugleich wird immer deutlicher, dass eine wirksame Neugestaltung der Eingangsphase nur mit einer umfassenden Reform des Studiums gelingen kann. Ziel des vierten Bandes der Potsdamer Beitr{\"a}ge zur Hochschulforschung ist es, eine Zwischenbilanz der Debatte zum Studieneingang zu ziehen. Auf der Basis empirischer Studien werden unterschiedliche Perspektiven auf den Studieneingang eingenommen und Empfehlungen zur Optimierung des Studieneingangs abgeleitet. Die zahlreichen Untersuchungsergebnisse Potsdamer Forschergruppen werden durch weitere nationale sowie internationale Perspektiven erg{\"a}nzt. Der Band richtet sich an alle, die sich f{\"u}r die Entwicklung an Hochschulen interessieren.}, language = {de} } @article{Wagner2019, author = {Wagner, Laura}, title = {Beratung in der Studieneingangsphase}, series = {Alles auf Anfang! Befunde und Perspektiven zum Studieneingang}, journal = {Alles auf Anfang! Befunde und Perspektiven zum Studieneingang}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-452-4}, issn = {2192-1075}, doi = {10.25932/publishup-42838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428387}, pages = {121 -- 135}, year = {2019}, language = {de} } @article{WagnerHofmannMaass2022, author = {Wagner, Birgit and Hofmann, Laura and Maaß, Ulrike}, title = {A therapist-supported internet-based intervention for bereaved siblings: a randomized controlled trial}, series = {Palliative medicine}, volume = {36}, journal = {Palliative medicine}, number = {10}, publisher = {Sage Publications}, address = {London}, issn = {0269-2163}, doi = {10.1177/02692163221122344}, pages = {1532 -- 1543}, year = {2022}, abstract = {Background: The loss of a sibling can have a long-term impact on the mental and physical health of the surviving sibling throughout adolescence and later adulthood. Even though bereaved siblings can be identified as a high-risk group, evidence-based interventions for this bereavement group are still missing. Aim: To evaluate the treatment effects of an internet-based writing intervention for bereaved siblings aged 16-65 years. Design: A two-armed randomized controlled trial (DRKS00011514) compared the intervention to a waiting list control group. The 6-week intervention consisted of six structured writing assignments that were based on cognitive behavioral therapy, focusing on the specific situation of bereaved siblings. Setting/participants: Eighty-six bereaved siblings (loss >1 month ago, no severe psychiatric symptoms) were randomly allocated to the intervention group (n = 47) or the waiting list control group (n = 39). Primary outcomes were symptoms of prolonged grief disorder and depression; secondary outcomes were posttraumatic stress symptoms and survivor guilt. Results: Symptoms of depression and prolonged grief disorder improved significantly in the intention-to-treat analyses from pre-to post-measurement compared with the control group (g(Depression) = -0.62, g(Grief) = 0.33). In the intervention group, all primary and secondary outcomes decreased significantly from baseline to 12-month follow-up (gs = -0.38 to -1.04). A significant clinical change could be found for depression (34\%) compared to the waitlist control group (10\%). Conclusions: Bereaved siblings profited from this brief internet-based writing intervention in the short- and long-term. However, future research, such as dismantling studies, may help to further optimize the benefits of an intervention aimed at bereaved siblings.}, language = {en} } @article{WagnerRosenbergHofmannetal.2020, author = {Wagner, Birgit and Rosenberg, Nicole and Hofmann, Laura and Maaß, Ulrike}, title = {Web-based bereavement care}, series = {Frontiers in psychiatry}, volume = {11}, journal = {Frontiers in psychiatry}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2020.00525}, pages = {13}, year = {2020}, abstract = {Background: Web-based interventions have been introduced as novel and effective treatments for mental disorders and, in recent years, specifically for the bereaved. However, a systematic summary of the effectiveness of online interventions for people experiencing bereavement is still missing. Objective: A systematic literature search was conducted by four reviewers who reviewed and meta-analytically summarized the evidence for web-based interventions for bereaved people. Methods: Systematic searches (PubMed, Web of Science, PsycInfo, PsycArticles, Medline, and CINAHL) resulted in seven randomized controlled trials (N= 1,257) that addressed adults having experienced bereavement using internet-based interventions. We used random effects models to summarize treatment effects for between-group comparisons (treatmentvs.control at post) and stability over time (postvs.follow-up). Results: All web-based interventions were based on cognitive behavioral therapy (CBT). In comparison with control groups, the interventions showed moderate (g= .54) to large effects (g= .86) for symptoms of grief and posttraumatic stress disorder (PTSD), respectively. The effect for depression was small (g= .44). All effects were stable over time. A higher number of treatment sessions achieved higher effects for grief symptoms and more individual feedback increased effects for depression. Other moderators (i.e.dropout rate, time since loss, exposure) did not significantly reduce moderate degrees of heterogeneity between the studies. Limitations: The number of includable studies was low in this review resulting to lower power for moderator analyses in particular. Conclusions: Overall, the results of web-based bereavement interventions are promising, and its low-threshold approach might reduce barriers to bereavement care. Nonetheless, future research should further examine potential moderators and specific treatment components (e.g.exposure, feedback) and compare interventions with active controls.}, language = {en} } @article{WagnerHofmannMaass2020, author = {Wagner, Birgit and Hofmann, Laura and Maaß, Ulrike}, title = {Online-group intervention after suicide bereavement through the use of webinars}, series = {Trials}, volume = {21}, journal = {Trials}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1468-6694}, doi = {10.1186/s13063-019-3891-5}, pages = {13}, year = {2020}, abstract = {Introduction: The death of a significant person through suicide is a very difficult experience and can have long-term impact on an individual's psychosocial and physical functioning. However, there are only few studies that have examined the effects of interventions in suicide survivors. In the present study, we examine an online-group intervention for people bereaved by suicide using a group-webinar. Methods: The intervention was developed based on focus groups with the target group. The cognitive-behavioral 12-module webinar-based group intervention focuses on suicide bereavement-related themes such as feelings of guilt, stigmatization, meaning reconstruction and the relationship to the deceased. Further, the webinar includes testimonial videos and psychoeducation. The suicide survivors are randomized to the intervention or the waiting list in a group-cluster randomized controlled trial. Primary outcomes are suicidality (Beck Scale for Suicide Ideation) and depression (Beck Depression Inventory-II) and secondary outcomes are symptoms of prolonged grief disorder (Inventory of Complicated Grief-German Version ), posttraumatic stress disorder ( Revised Impact of Event Scale ), stigmatization (Stigma of Suicide and Suicide Survivor ) and posttraumatic cognitions (Posttraumatic Cognitions Inventory). Discussion: Previous studies of Internet-based interventions for the bereaved were based on writing interventions showing large treatment effects. Little is known about the use of webinars as group interventions. Advantages and challenges of this novel approach of psychological interventions will be discussed.}, language = {en} } @article{MaassHofmannPerlingeretal.2020, author = {Maaß, Ulrike and Hofmann, Laura and Perlinger, Julia and Wagner, Birgit}, title = {Effects of bereavement groups-a systematic review and meta-analysis}, series = {Death studies}, volume = {46}, journal = {Death studies}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {0748-1187}, doi = {10.1080/07481187.2020.1772410}, pages = {708 -- 718}, year = {2020}, abstract = {This review summarizes the evidence of bereavement groups for symptoms of grief and depression. The literature search using Web of Science, EBSCO, PubMed, CINAHL, and MEDLINE yielded 14 studies (N = 1519) meeting the inclusion criteria (i.e., randomized-controlled trials, bereaved adults, bereavement group, validated measures). Overall, bereavement groups were marginally more effective than control groups post-treatment (gG = 0.33, gD = 0.22) but not at follow-up. Although tertiary interventions yielded larger effect sizes than secondary interventions, the difference was not significant. The results imply that the evidence for bereavement groups is weak, although the large heterogeneity of concepts for intervention and control groups limits the generalizability.}, language = {en} }