@article{deMolinaHerfurthLaschewskyetal.2012, author = {de Molina, Paula Malo and Herfurth, Christoph and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Structure and dynamics of networks in mixtures of hydrophobically modified telechelic multiarm polymers and oil in water microemulsions}, series = {Langmuir}, volume = {28}, journal = {Langmuir}, number = {45}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la303673a}, pages = {15994 -- 16006}, year = {2012}, abstract = {The structural and dynamical properties of oil-in-water (O/W) microemulsions (MEs) modified with telechelic polymers of different functionality (e.g., number of hydrophobically modified arms, f) were studied by means of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and high frequency rheology measurements as a function of the polymer architecture and the amount of added polymer. For this purpose, we employed tailor-made hydrophobically end-capped poly(N,N-dimethylacrylamide) star polymers of a variable number of endcaps, f, of different alkyl chain lengths, synthesized by the reversible addition-fragmentation chain transfer method. The addition of the different end-capped polymers to an uncharged ME of O/W droplets leads to a large enhancement of the viscosity of the systems. SANS experiments show that the O/W ME droplets are not changed upon the addition of the polymer, and its presence only changes the interdroplet interactions. The viscosity increases largely upon addition of a polymer, and this enhancement depends pronouncedly on the alkyl length of the hydrophobic sticker as it controls the residence time in a ME droplet. Similarly, the high frequency modulus G(0) depends on the amount of added polymer but not on the sticker length. G(0) was found to be directly proportional to f - 1. The onset of network formation is shifted to a lower number of stickers per ME droplet with increasing f, and the network formation becomes more effective. Thus, the dynamics of network formation are controlled by the polymer architecture. The effect on the dynamics seen by DLS is even more pronounced. Upon increasing the polymer concentration, slower relaxation modes appear that become especially pronounced with increasing number of arms. The relaxation dynamics are correlated to the rheological relaxation, and both are controlled by the polymer architecture.}, language = {en} } @article{deMolinaIhlefeldtPrevostetal.2015, author = {de Molina, Paula Malo and Ihlefeldt, Franziska Stefanie and Prevost, Sylvain and Herfurth, Christoph and Appavou, Marie-Sousai and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b00817}, pages = {5198 -- 5209}, year = {2015}, abstract = {The polymer architecture of telechelic or associative polymers has a large impact on the bridging of self-assembled structures. This Work presents: the phase behavior, small angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescence correlation spectroscopy (FCS) of a nonionic oil-in-water (O/W) microemulsion with hydrophobically end-capped multiarm polymers With functionalities f = 2, 3, and 4. For high polymer concentrations and large average interdroplet distance relative to the end-to-end distance of the polymer, d/R-ee; the system phase separates into a dense, highly connected droplet network phase, in equilibrium with a dilute phase. The extent of the two-phase region is larger for polymers With similar length but higher f. The Interaction potential between the droplets in the presence of polymer has both a repulsive and an attractive contribution as a result of the counterbalancing effects of the exclusion by polymer chains and bridging between droplets. This study experimentally demonstrates that higher polymer functionalities induce a stronger attractive force between droplets, which is responsible for a more extended phase separation region., and correlate with lower Collective droplet diffusivities and higher amplitude of the second relaxation time in DLS. The viscosity and the droplet self-diffusion obtained from FCS, however, are dominated by the end-capped chain concentration.}, language = {en} } @article{HechenbichlerLaschewskyGradzielski2020, author = {Hechenbichler, Michelle and Laschewsky, Andre and Gradzielski, Michael}, title = {Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs}, series = {Colloid and polymer science}, volume = {299}, journal = {Colloid and polymer science}, number = {2}, publisher = {Springer}, address = {Berlin; Heidelberg}, issn = {0303-402X}, doi = {10.1007/s00396-020-04701-9}, pages = {205 -- 219}, year = {2020}, abstract = {Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt\% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C.}, language = {en} } @misc{HechenbichlerLaschewskyGradzielski2020, author = {Hechenbichler, Michelle and Laschewsky, Andre and Gradzielski, Michael}, title = {Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {299}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, publisher = {Springer}, address = {Berlin; Heidelberg}, issn = {0303-402X}, doi = {10.25932/publishup-59837}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-598378}, pages = {17}, year = {2020}, abstract = {Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt\% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C.}, language = {en} } @article{HerfurthdeMolinaWielandetal.2012, author = {Herfurth, Christoph and de Molina, Paula Malo and Wieland, Christoph and Rogers, Sarah and Gradzielski, Michael and Laschewsky, Andr{\´e}}, title = {One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20126g}, pages = {1606 -- 1617}, year = {2012}, abstract = {Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90\%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter.}, language = {en} } @article{HerfurthLaschewskyNoirezetal.2016, author = {Herfurth, Christoph and Laschewsky, Andre and Noirez, Laurence and von Lospichl, Benjamin and Gradzielski, Michael}, title = {Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {107}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2016.09.089}, pages = {422 -- 433}, year = {2016}, abstract = {A series of hydrophobically end-capped linear triblock copolymers as well as of three-arm and four-arm star block copolymers was synthesized in a one-pot procedure from N,N-dimethylacrylamide (DMA) and N, N-diethylacrylamide (DEA). The sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of these monomers via the R-approach using bi-, tri- and tetrafunctional chain transfer agents (CrAs) bearing hydrophobic dodecyl moieties proceeded in a well-controlled manner up to almost quantitative conversion. Polymers with molar masses up to 150 kDa, narrow molar mass distribution (PDI <= 1.3) and high end group functionality were obtained, which are thermoresponsive in aqueous solution showing a LCST (lower critical solution temperature) transition. The temperature-dependent associative behavior of the polymers was examined using turbidimetry, static and dynamic light scattering (SLS, DLS), and small angle neutron scattering (SANS) for structural analysis. At 25 degrees C, the polymers form weak transient networks, and rather small hydrophobic domains are already present for polymer concentrations of 5 wt\%. However, when heating above the LCST transition (35-40 degrees C) of the PDEA blocks, the enhanced formation of hydrophobic domains is observed by means of light and neutron scattering. These domains have a size of about 12-15 nm and must be effectively physically cross-linked as they induce high viscosity for the more concentrated samples. SANS shows that these domains are ordered as evidenced by the appearance of a correlation peak. The copolymer architecture affects in particular the extent of ordering as the four-arm star block copolymer shows much more repulsive interactions compared to the analogous copolymers with a lower number of arms. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{InalChiappisiKoelschetal.2013, author = {Inal, Sahika and Chiappisi, Leonardo and K{\"o}lsch, Jonas D. and Kraft, Mario and Appavou, Marie-Sousai and Scherf, Ullrich and Wagner, Manfred and Hansen, Michael Ryan and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp408864s}, pages = {14576 -- 14587}, year = {2013}, abstract = {Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {1}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {40}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c3tc31304b}, pages = {6603 -- 6612}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Kraft, Mario and Gutacker, Andrea and Janietz, Dietmar and Scherf, Ullrich and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte}, series = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, volume = {214}, journal = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, number = {4}, publisher = {WILEY-V C H VERLAG GMBH}, address = {WEINHEIM}, issn = {1022-1352}, doi = {10.1002/macp.201200493}, pages = {435 -- 445}, year = {2013}, abstract = {Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device.}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, doi = {10.1039/C3TC31304B}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} }