@article{DoscheKumkeLoehmannsroebenetal.2004, author = {Dosche, Carsten and Kumke, Michael Uwe and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Ariese, Freek and Bader, Arjen N. and Gooijer, Cees and Miljanic, Ognjen S. and Iwamoto, M. and Vollhardt, K. Peter C. and Puchta, Ralph and Hommes, N. J. R. V.}, title = {Deuteration effects on the vibronic structure of the fluorescence spectra and the internal conversion rates of triangular [4]phenylene}, issn = {1463-9076}, year = {2004}, abstract = {Deuteration effects on the vibronic structure of the emission and excitation spectra of triangular [ 4] phenylene (D-3h [4]phenylene) were studied using laser-excited Shpol'skii spectroscopy (LESS) in an octane matrix at 4.2 K. For correct assignment of the vibrational modes, the experimental results were compared with calculated frequencies (B3LYP/6-31G*). CH vibrations were identified by their characteristic isotopic shifts in the spectra of deuterated triangular [4]phenylenes. Two CC stretching modes, at 100 cm(-1) and 1176 cm(-1), suitable as probes for bond strength changes in the excited state, were identified. The isotope effect on the internal conversion rates of triangular [4] phenylene was evaluated from measurements of temperature dependent lifetime. Isotope dependency and the magnitude of the internal conversion rates indicate that internal conversion in triangular [4] phenylene is most likely induced by CH vibrations. The results obtained by LESS and lifetime measurements were compared with PM3 PECI calculations of the excited state structure. The theoretical results and the relation between ground and excited state vibration energies of the 1176 cm(-1) probe vibration indicate a reduction of bond alternation of the central cyclohexatriene ring in the excited state}, language = {en} } @misc{DoscheLoehmannsroebenBieseretal.2002, author = {Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Bieser, A. and Dosa, P. I. and Han, S. and Iwamoto, M. and Schleifenbaum, A. and Vollhardt, K. Peter C.}, title = {Photophysical properties of [N]phenylenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11936}, year = {2002}, abstract = {In the present study, photophysical properties of [N]phenylenes were studied by means of stationary and time-resolved absorption and fluorescence spectroscopy (in THF at room temperature). For biphenylene (1) and linear [3]phenylene (2a), internal conversion (IC) with quantum yields ΦIC > 0.99 is by far the dominant mechanism of S1 state deactivation. Angular [3]phenylene (3a), the zig-zag [4]- and [5]phenylenes (3b), (3c), and the triangular [4]phenylene (4) show fluorescence emission with fluorescence quantum yieds and lifetimes between ΦF = 0.07 for (3a) and 0.21 for (3c) and τF = 20 ns for (3a) and 81 ns for (4). Also, compounds (3) and (4) exhibit triplet formation upon photoexcitation with quantum yields as high as ΦISC = 0.45 for (3c). The strong differences in the fluorescence properties and in the triplet fromation efficiencies between (1) and (2a) on one hand and (3) and (4) on the other are related to the remarkable variation of the internal conversion (IC) rate constants kIC. A tentative classification of (1) and (2a) as "fast IC compounds", with kIC > 109 s-1, and of (3) and (4) as "slow IC compounds", with kIC ≈ 107 s-1, is suggested. This classification cannot simply be related to H{\"u}ckel's rule-type concepts of aromaticity, because the group of "fast IC compounds" consists of "antiaromatic" (1) and "aromatic" (2a), and the group of "slow IC compounds" consists of "antiaromatic" (3b), (4) and "aromatic" (3a), (3c). The IC in the [N]phenylenes is discussed within the framework of the so-called energy gap law established for non-radiative processes in benzenoid hydrocarbons.}, language = {en} } @article{DoscheLoehmannsroebenBieseretal.2002, author = {Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Bieser, A. and Dosa, P. I. and Han, S. and Iwamoto, M. and Schleifenbaum, A. and Vollhardt, K. Peter C.}, title = {Photophysical properties of [N]phenylenes}, year = {2002}, language = {en} } @misc{DoscheMicklerLoehmannsroebenetal.2007, author = {Dosche, Carsten and Mickler, Wulfhard and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Agenet, Nicolas and Vollhardt, K. Peter C.}, title = {Photoinduced electron transfer in [N]phenylenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12463}, year = {2007}, abstract = {First studies of electron transfer in [N]phenylenes were performed in bimolecular quenching reactions of angular [3]- and triangular [4]phenylene with various electron acceptors. The relation between the quenching rate constants kq and the free energy change of the electron transfer (ΔG0CS ) could be described by the Rehm-Weller equation. From the experimental results, a reorganization energy λ of 0.7 eV was derived. Intramolecular electron transfer reactions were studied in an [N]phenylene bichomophore and a corresponding reference compound. Fluorescence lifetime and quantum yield of the bichromophor display a characteristic dependence on the solvent polarity, whereas the corresponding values of the reference compound remain constant. From the results, a nearly isoenergonic ΔG0CS can be determined. As the triplet quantum yield is nearly independent of the polarity, charge recombination leads to the population of the triplet state.}, language = {en} } @article{DoscheMicklerLoehmannsroebenetal.2007, author = {Dosche, Carsten and Mickler, Wulfhard and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Agenet, Nicolas and Vollhardt, K. Peter C.}, title = {Photoinduced electron transfer in [N]phenylenes}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2006.12.038}, year = {2007}, abstract = {First studies of electron transfer in [N]phenylenes were performed in bimolecular quenching reactions of angular [3]- and triangular [4]phenylene with various electron acceptors. The relation between the quenching rate constants k(q) and the free energy change of the electron transfer (Delta G(CS)(0)) could be described by the Rehm- Weller equation. From the experimental results, a reorganization energy lambda of 0.7 eV was derived. Intramolecular electron transfer reactions were studied in an [N]phenylene bichomophore and a corresponding reference compound. Fluorescence lifetime and quantum yield of the bichromophor display a characteristic dependence on the solvent polarity, whereas the corresponding values of the reference compound remain constant. From the results, a nearly isoenergonic charge separation process can be determined. As the triplet quantum yield is nearly independent of the polarity, charge recombination leads to the population of the triplet state.}, language = {en} } @article{HilleBergBresseletal.2008, author = {Hille, Carsten and Berg, Maik and Bressel, Lena and Munzke, Dorit and Primus, Philipp and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Dosche, Carsten}, title = {Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues}, doi = {10.1007/s00216-008-2147-0}, year = {2008}, abstract = {pH sensing in living cells represents one of the most prominent topics in biochemistry and physiology. In this study we performed one-photon and two-photon time-domain fluorescence lifetime imaging with a laser-scanning microscope using the time-correlated single-photon counting technique for imaging intracellular pH levels. The suitability of different commercial fluorescence dyes for lifetime-based pH sensing is discussed on the basis of in vitro as well of in situ measurements. Although the tested dyes are suitable for intensity-based ratiometric measurements, for lifetime- based techniques in the time-domain so far only BCECF seems to meet the requirements of reliable intracellular pH recordings in living cells.}, language = {en} } @article{HilleLahnLoehmannsroebenetal.2009, author = {Hille, Carsten and Lahn, Mattes and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Dosche, Carsten}, title = {Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands}, issn = {1474-905X}, doi = {10.1039/B813797H}, year = {2009}, language = {en} } @article{KumkeDoscheFlehretal.2006, author = {Kumke, Michael Uwe and Dosche, Carsten and Flehr, Roman and Trowitzsch-Kienast, Wolfram and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Spectroscopic characterization of the artificial siderophore pyridinochelin}, issn = {0939-5075}, year = {2006}, language = {en} } @article{MareljaChowdhuryDoscheetal.2013, author = {Marelja, Zvonimir and Chowdhury, Mita Mullick and Dosche, Carsten and Hille, Carsten and Baumann, Otto and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Leimk{\"u}hler, Silke}, title = {The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0060869}, pages = {13}, year = {2013}, abstract = {In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Forster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.}, language = {en} } @article{RiebeBeitzDoscheetal.2014, author = {Riebe, Daniel and Beitz, Toralf and Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Raab, Volker and Raab, Corinna and Unverzagt, Matthias}, title = {High-resolution spectrometer using combined dispersive and interferometric wavelength separation for raman and laser-induced Breakdown Spectroscopy (LIBS)}, series = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, volume = {68}, journal = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, number = {9}, publisher = {Society for Applied Spectroscopy}, address = {Frederick}, issn = {0003-7028}, doi = {10.1366/13-07426}, pages = {1030 -- 1038}, year = {2014}, abstract = {In this paper the concept of a compact high-resolution spectrometer based on the combination of dispersive and interferometric elements is presented. Dispersive elements are used to spectrally resolve the light in one direction with coarse resolution (Delta lambda < 0.5 nm), while perpendicular to that direction an etalon provides high spectral resolution (Delta lambda < 50 pm). This concept for two-dimensional spectroscopy has been implemented for the wavelength range lambda = 350-650 nm. Appropriate algorithms for reconstructing spectra from the two-dimensional raw data and for wavelength calibration were established in an analysis software. Potential applications for this new spectrometer are Raman and laser-induced breakdown spectroscopy (LIBS). Resolutions down to 28 pm (routinely 54 pm) could be realized for these applications.}, language = {en} }