@article{LahLoeberHsiangetal.2017, author = {Lah, Ljerka and L{\"o}ber, Ulrike and Hsiang, Tom and Hartmann, Stefanie}, title = {A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles}, series = {Fungal biology}, volume = {121}, journal = {Fungal biology}, publisher = {Elsevier}, address = {Oxford}, issn = {1878-6146}, doi = {10.1016/j.funbio.2016.12.002}, pages = {234 -- 252}, year = {2017}, abstract = {Ophiostomatoid fungi are vectored by their bark-beetle associates and colonize different host tree species. To survive and proliferate in the host, they have evolved mechanisms for detoxification and elimination of host defence compounds, efficient nutrient sequestration, and, in pathogenic species, virulence towards plants. Here, we assembled a draft genome of the spruce pathogen Ophiostoma bicolor. For our comparative and phylogenetic analyses, we mined the genomes of closely related species (Ophiostoma piceae, Ophiostoma ulmi, Ophiostoma novo-ulmi, and Grosmannia clavigera). Our aim was to acquire a genomic and evolutionary perspective of gene families important in host colonization. Genome comparisons showed that both the nuclear and mitochondrial genomes in our assembly were largely complete. Our O. bicolor 25.3 Mbp draft genome had 10 018 predicted genes, 6041 proteins with gene ontology (GO) annotation, 269 carbohydrate-active enzymes (CAZymes), 559 peptidases and inhibitors, and 1373 genes likely involved in pathogen-host interactions. Phylogenetic analyses of selected protein families revealed core sets of cytochrome P450 genes, ABC transporters and backbone genes involved in secondary metabolite (SM) biosynthesis (polyketide synthases (PKS) and non-ribosomal synthases), and species-specific gene losses and duplications. Phylogenetic analyses of protein families of interest provided insight into evolutionary adaptations to host biochemistry in ophiostomatoid fungi.}, language = {en} } @article{CuiLoeberAlquezarPlanasetal.2016, author = {Cui, Pin and L{\"o}ber, Ulrike and Alquezar-Planas, David E. and Ishida, Yasuko and Courtiol, Alexandre and Timms, Peter and Johnson, Rebecca N. and Lenz, Dorina and Helgen, Kristofer M. and Roca, Alfred L. and Hartman, Stefanie and Greenwood, Alex D.}, title = {Comprehensive profiling of retroviral integration sites using target enrichment methods from historical koala samples without an assembled reference genome}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.1847}, pages = {29}, year = {2016}, abstract = {Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.}, language = {en} }