@article{ZhuCottonKwaketal.2021, author = {Zhu, Chuanbin and Cotton, Fabrice and Kwak, Dong-Youp and Ji, Kun and Kawase, Hiroshi and Pilz, Marco}, title = {Within-site variability in earthquake site response}, series = {Geophysical journal international}, volume = {229}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggab481}, pages = {1268 -- 1281}, year = {2021}, abstract = {The within-site variability in site response is the randomness in site response at a given site from different earthquakes and is treated as aleatory variability in current seismic hazard/risk analyses. In this study, we investigate the single-station variability in linear site response at K-NET and KiK-net stations in Japan using a large number of earthquake recordings. We found that the standard deviation of the horizontal-to-vertical Fourier spectral ratio at individual sites, that is single-station horizontal-to-vertical spectral ratio (HVSR) sigma sigma(HV,s), approximates the within-site variability in site response quantified using surface-to-borehole spectral ratios (for oscillator frequencies higher than the site fundamental frequency) or empirical ground-motion models. Based on this finding, we then utilize the single-station HVSR sigma as a convenient tool to study the site-response variability at 697 KiK-net and 1169 K-NET sites. Our results show that at certain frequencies, stiff, rough and shallow sites, as well as small and local events tend to have a higher sigma(HV,s). However, when being averaged over different sites, the single-station HVSR sigma, that is sigma(HV), increases gradually with decreasing frequency. In the frequency range of 0.25-25 Hz, sigma(HV) is centred at 0.23-0.43 in ln scales (a linear scale factor of 1.26-1.54) with one standard deviation of less than 0.1. sigma(HV) is quite stable across different tectonic regions, and we present a constant, as well as earthquake magnitude- and distance-dependent sigma(HV) models.}, language = {en} }