@article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{BlasigWinklerLassowskietal.2006, author = {Blasig, Ingolf E. and Winkler, Lars and Lassowski, Birgit and M{\"u}ller, Sandra L. and Zuleger, Nikolaj and Krause, Eberhard and Krause, Gerd and Gast, Klaus and Kolbe, Michael and Piontek, J{\"o}rg}, title = {On the self-association potential of transmembrane tight junction proteins}, issn = {1420-682X}, doi = {10.1007/s00018-005-5472-x}, year = {2006}, abstract = {Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiled-coil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported}, language = {en} } @article{KellerCatalaLehnenHuebneretal.2014, author = {Keller, Johannes and Catala-Lehnen, Philip and Huebner, Antje K. and Jeschke, Anke and Heckt, Timo and Lueth, Anja and Krause, Matthias and Koehne, Till and Albers, Joachim and Schulze, Jochen and Schilling, Sarah and Haberland, Michael and Denninger, Hannah and Neven, Mona and Hermans-Borgmeyer, Irm and Streichert, Thomas and Breer, Stefan and Barvencik, Florian and Levkau, Bodo and Rathkolb, Birgit and Wolf, Eckhard and Calzada-Wack, Julia and Neff, Frauke and Gailus-Durner, Valerie and Fuchs, Helmut and de Angelis, Martin Hrabe and Klutmann, Susanne and Tsourdi, Elena and Hofbauer, Lorenz C. and Kleuser, Burkhard and Chun, Jerold and Schinke, Thorsten and Amling, Michael}, title = {Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms6215}, pages = {13}, year = {2014}, abstract = {The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P(3). Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P(3)-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts.}, language = {en} } @misc{TrilckeParrD'Aprileetal.2023, author = {Trilcke, Peer and Parr, Rolf and D'Aprile, Iwan-Michelangelo and Kraus, Hans-Christof and Blomqvist, Clarissa and McGillen, Petra S. and Aus der Au, Carmen and Phillips, Alexander Robert and Helmer, Debora and Singer, R{\"u}diger and G{\"o}rner, R{\"u}diger and Berbig, Roland and Rose, Dirk and Wilhelms, Kerstin and Krause, Marcus and Hehle, Christine and Gretz, Daniela and Gfrereis, Heike and Lepp, Nicola and Morlok, Franziska and Haut, Gideon and Brechenmacher, Thomas and Stauffer, Isabelle and Lyon, John B. and Bachmann, Vera and Ewert, Michael and Immer, Nikolas and Vedder, Ulrike and Fischer, Hubertus and Becker, Sabina and Wegmann, Christoph and M{\"o}ller, Klaus-Peter and Schneider, Ulrike and Waszynski, Alexander and Wedel, Michael and Brehm, David and Wolpert, Georg}, title = {Fontanes Medien}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Philosophische Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Philosophische Reihe}, number = {178}, editor = {Trilcke, Peer}, issn = {1866-8380}, doi = {10.25932/publishup-57407}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574079}, pages = {XIII, 672}, year = {2023}, abstract = {Theodor Fontane war, im durchaus modernen Sinne, ein Medienarbeiter: Als Presse-Agent in London lernte er die innovativste Presselandschaft seiner Zeit kennen; als Redakteur in Berlin leistete er journalistische K{\"a}rrnerarbeit; er schrieb Kritiken {\"u}ber das Theater, die bildende Kunst und die Literatur - und auch seine Romane wie seine Reiseb{\"u}cher sind stets Medienprodukte, als Serien in in Zeitungen und Zeitschriften platziert, bevor sie auf dem Buchmarkt erschienen. Der vorliegende Band dokumentiert die Ergebnisse eines internationalen Kongresses, veranstaltet 2019 vom Theodor-Fontane-Archiv in Potsdam. Die ebenso rasante wie umfassende Medialisierung und Vernetzung der Gesellschaft im Laufe des 19. Jahrhunderts wird dabei als produktive Voraussetzung der schriftstellerischen T{\"a}tigkeit Fontanes begriffen. Eingebettet in ein weit verzweigtes Netz der Korrespondenz und der postalischen Textzirkulation, vertraut mit den Routinen und Publika der periodischen Massenpresse, f{\"u}r die er sein Leben lang schrieb, und auf vielf{\"a}ltige Weise gepr{\"a}gt von der visuellen Kultur seiner Zeit wird Theodor Fontane als gleichermaßen journalistisch versierter wie {\"a}sthetisch sensibler Grenzg{\"a}nger erkennbar.}, language = {de} } @inproceedings{TrilckeParrD'Aprileetal.2022, author = {Trilcke, Peer and Parr, Rolf and D'Aprile, Iwan-Michelangelo and Kraus, Hans-Christof and Blomqvist, Clarissa and McGillen, Petra S. and Aus der Au, Carmen and Phillips, Alexander Robert and Helmer, Debora and Singer, R{\"u}diger and G{\"o}rner, R{\"u}diger and Berbig, Roland and Rose, Dirk and Wilhelms, Kerstin and Krause, Marcus and Hehle, Christine and Gretz, Daniela and Gfrereis, Heike and Lepp, Nicola and Morlok, Franziska and Haut, Gideon and Brechenmacher, Thomas and Stauffer, Isabelle and Lyon, John B. and Bachmann, Vera and Ewert, Michael and Immer, Nikolas and Vedder, Ulrike and Fischer, Hubertus and Becker, Sabina and Wegmann, Christoph and M{\"o}ller, Klaus-Peter and Schneider, Ulrike and Waszynski, Alexander and Wedel, Michael and Brehm, David and Wolpert, Georg}, title = {Fontanes Medien}, editor = {Trilcke, Peer}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-073330-3}, doi = {10.1515/9783110733235}, pages = {XIII, 672}, year = {2022}, abstract = {Theodor Fontane war, im durchaus modernen Sinne, ein Medienarbeiter: Als Presse-Agent in London lernte er die innovativste Presselandschaft seiner Zeit kennen; als Redakteur in Berlin leistete er journalistische K{\"a}rrnerarbeit; er schrieb Kritiken {\"u}ber das Theater, die bildende Kunst und die Literatur - und auch seine Romane wie seine Reiseb{\"u}cher sind stets Medienprodukte, als Serien in in Zeitungen und Zeitschriften platziert, bevor sie auf dem Buchmarkt erschienen. Der vorliegende Band dokumentiert die Ergebnisse eines internationalen Kongresses, veranstaltet 2019 vom Theodor-Fontane-Archiv in Potsdam. Die ebenso rasante wie umfassende Medialisierung und Vernetzung der Gesellschaft im Laufe des 19. Jahrhunderts wird dabei als produktive Voraussetzung der schriftstellerischen T{\"a}tigkeit Fontanes begriffen. Eingebettet in ein weit verzweigtes Netz der Korrespondenz und der postalischen Textzirkulation, vertraut mit den Routinen und Publika der periodischen Massenpresse, f{\"u}r die er sein Leben lang schrieb, und auf vielf{\"a}ltige Weise gepr{\"a}gt von der visuellen Kultur seiner Zeit wird Theodor Fontane als gleichermaßen journalistisch versierter wie {\"a}sthetisch sensibler Grenzg{\"a}nger erkennbar.}, language = {de} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @misc{WippertFliesserKrause2017, author = {Wippert, Pia-Maria and Fliesser, Michael and Krause, Matthias}, title = {Risk and protective factors in the clinical rehabilitation of chronic back pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402201}, pages = {11}, year = {2017}, abstract = {Objectives: Chronic back pain (CBP) can lead to disability and burden. In addition to its medical causes, its development is influenced by psychosocial risk factors, the so-called flag factors, which are categorized and integrated into many treatment guidelines. Currently, most studies investigate single flag factors, which limit the estimation of individual factor significance in the development of chronic pain. Furthermore, factors concerning patients' lifestyle, biography and treatment history are often neglected. Therefore, the objectives of the present study are to identify commonly neglected factors of CBP and integrate them into an analysis model comparing their significance with established flag factors. Methods: A total of 24 patients and therapists were cross-sectionally interviewed to identify commonly neglected factors of CBP. Subsequently, the impact of these factors was surveyed in a longitudinal study. In two rehabilitation clinics, CBP patients (n = 145) were examined before and 6 months after a 3-week inpatient rehabilitation. Outcome variables, chronification factor pain experience (CF-PE) and chronification factor disability (CF-D), were ascertained with confirmatory factor analysis (CFA) of standardized questionnaires. Predictors were evaluated using stepwise calculations of simple and multiple regression models. Results: Through interviews, medical history, iatrogenic factors, poor compliance, critical life events (LEs), social support (SS) type and effort-reward were identified as commonly neglected factors. However, only the final three held significance in comparison to established factors such as depression and pain-related cognitions. Longitudinally, lifestyle factors found to influence future pain were initial pain, physically demanding work, nicotine consumption, gender and rehabilitation clinic. LEs were unexpectedly found to be a strong predictor of future pain, as were the protective factors, reward at work and perceived SS. Discussion: These findings shed insight regarding often overlooked factors in the development of CBP, suggesting that more detailed operationalization and superordinate frameworks would be beneficial to further research. Conclusion: In particular, LEs should be taken into account in future research. Protective factors should be integrated in therapeutic settings.}, language = {en} } @article{WippertFliesserKrause2017, author = {Wippert, Pia-Maria and Fliesser, Michael and Krause, Matthias}, title = {Risk and protective factors in the clinical rehabilitation of chronic back pain}, series = {Journal of pain research}, volume = {10}, journal = {Journal of pain research}, publisher = {Dove Medical Press}, address = {Albany, Auckland}, issn = {1178-7090}, doi = {10.2147/JPR.S134976}, pages = {1569 -- 1579}, year = {2017}, abstract = {Objectives: Chronic back pain (CBP) can lead to disability and burden. In addition to its medical causes, its development is influenced by psychosocial risk factors, the so-called flag factors, which are categorized and integrated into many treatment guidelines. Currently, most studies investigate single flag factors, which limit the estimation of individual factor significance in the development of chronic pain. Furthermore, factors concerning patients' lifestyle, biography and treatment history are often neglected. Therefore, the objectives of the present study are to identify commonly neglected factors of CBP and integrate them into an analysis model comparing their significance with established flag factors. Methods: A total of 24 patients and therapists were cross-sectionally interviewed to identify commonly neglected factors of CBP. Subsequently, the impact of these factors was surveyed in a longitudinal study. In two rehabilitation clinics, CBP patients (n = 145) were examined before and 6 months after a 3-week inpatient rehabilitation. Outcome variables, chronification factor pain experience (CF-PE) and chronification factor disability (CF-D), were ascertained with confirmatory factor analysis (CFA) of standardized questionnaires. Predictors were evaluated using stepwise calculations of simple and multiple regression models. Results: Through interviews, medical history, iatrogenic factors, poor compliance, critical life events (LEs), social support (SS) type and effort-reward were identified as commonly neglected factors. However, only the final three held significance in comparison to established factors such as depression and pain-related cognitions. Longitudinally, lifestyle factors found to influence future pain were initial pain, physically demanding work, nicotine consumption, gender and rehabilitation clinic. LEs were unexpectedly found to be a strong predictor of future pain, as were the protective factors, reward at work and perceived SS. Discussion: These findings shed insight regarding often overlooked factors in the development of CBP, suggesting that more detailed operationalization and superordinate frameworks would be beneficial to further research. Conclusion: In particular, LEs should be taken into account in future research. Protective factors should be integrated in therapeutic settings.}, language = {en} } @article{NardiniRybackiKrauseetal.2020, author = {Nardini, Livia and Rybacki, Erik and Krause, Michael and Morales, Luiz F.G. and Dresen, Georg}, title = {Control of the geometric arrangement of material heterogeneities on strain localization at the brittle-to-ductile transition in experimentally deformed carbonate rocks}, series = {Journal of Structural Geology}, volume = {135}, journal = {Journal of Structural Geology}, publisher = {Pergamon Press}, address = {Oxford ; Frankfurt, M.}, issn = {0191-8141}, doi = {10.1016/j.jsg.2020.104038}, year = {2020}, abstract = {Triaxial high temperature (900 °C) deformation experiments were conducted at constant strain rate in a Paterson-type deformation apparatus on cylinders of Carrara marble with two right or left stepping, non-overlapping weak inclusions of Solnhofen limestone, oriented at 45° to the cylinders' longitudinal axes. Applying different values of confinement (30, 50, 100 and 300 MPa) we induced various amounts of brittle deformation in the marble matrix and investigated the effect of brittle precursors on the initiation and development of heterogeneity-induced high temperature shear zones. Viscosity contrast between the matrix and the inclusions induces local stress concentration at the tips of these latter. The initial arrangement of the inclusions results in either an overpressured (contractional) or underpressured (extensional) domain in the step-over region of the sample. At low confinement (30 and 50 MPa) abundant brittle deformation is observed, but the spatial distribution of microfractures is dependent on the kinematics of the step-over region: microcracks occur either along the shearing plane between inclusions (in extensional bridge samples), or broadly distributed outside the step-over region (contractional bridge samples). Accordingly, ductile deformation localizes along the inclusions plane in the extensional bridge samples as opposed to distributing over large areas of the matrix in the contractional bridge samples. If microcracking is suppressed (high confinement), strain is accommodated by viscous creep and strain progressively de-localizes in extensional bridge samples. Our experiments demonstrate that brittle precursors enhance the degree of localization in the ductile deformation regime, but only if the interaction of pre-existing heterogeneities induces an extensional mean stress regime in between.}, language = {en} } @article{BurekKrauseSchwotzeretal.2018, author = {Burek, Katja and Krause, Felix and Schwotzer, Matthias and Nefedov, Alexei and S{\"u}ssmuth, Julia and Haubitz, Toni and Kumke, Michael Uwe and Thissen, Peter}, title = {Hydrophobic Properties of Calcium-Silicate Hydrates Doped with Rare-Earth Elements}, series = {ACS sustainable chemistry \& engineering}, volume = {6}, journal = {ACS sustainable chemistry \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/acssuschemeng.8b03244}, pages = {14669 -- 14678}, year = {2018}, abstract = {In this study, the apparent relationship between the transport process and the surface chemistry of the Calcium-Silicate Hydrate (CSH) phases was investigated. For this purpose, a method was developed to synthesize ultrathin CSH phases to be used as a model substrate with the specific modification of their structure by introducing europium (Eu(III)). The structural and chemical changes during this Eu(III)-doping were observed by means of infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and time-resolved laser fluorescence spectroscopy (TRLFS). These alterations of the CSH phases led to significant changes in the surface chemistry and consequently to considerable variations in the interaction with water, as evidenced by measurements of the contact angles on the modified model substrates. Our results provide the basis for a more profound molecular understanding of reactive transport processes in cement-based systems. Furthermore, these results broaden the perspective of improving the stability of cement-based materials, which are subjected to the impact of aggressive aqueous environments through targeted modifications of the CSH phases.}, language = {en} }