@article{ApeltBreuerNikoloskietal.2015, author = {Apelt, Federico and Breuer, David and Nikoloski, Zoran and Stitt, Mark and Kragler, Friedrich}, title = {Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth}, series = {The plant journal}, volume = {82}, journal = {The plant journal}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12833}, pages = {693 -- 706}, year = {2015}, abstract = {Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge.}, language = {en} } @article{ApeltBreuerOlasetal.2017, author = {Apelt, Federico and Breuer, David and Olas, Justyna Jadwiga and Annunziata, Maria Grazia and Flis, Anna and Nikoloski, Zoran and Kragler, Friedrich and Stitt, Mark}, title = {Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {174}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.17.00503}, pages = {1949 -- 1968}, year = {2017}, language = {en} } @article{MorenoCurtidorAnnunziataGuptaetal.2020, author = {Moreno Curtidor, Catalina and Annunziata, Maria Grazia and Gupta, Saurabh and Apelt, Federico and Richard, Sarah Isabel and Kragler, Friedrich and M{\"u}ller-R{\"o}ber, Bernd and Olas, Justyna Jadwiga}, title = {Physiological profiling of embryos and dormant seeds in two Arabidopsis accessions reveals a metabolic switch in carbon reserve accumulation}, series = {Frontiers in plant science}, volume = {11}, journal = {Frontiers in plant science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2020.588433}, pages = {14}, year = {2020}, abstract = {In flowering plants, sugars act as carbon sources providing energy for developing embryos and seeds. Although most studies focus on carbon metabolism in whole seeds, knowledge about how particular sugars contribute to the developmental transitions during embryogenesis is scarce. To develop a quantitative understanding of how carbon composition changes during embryo development, and to determine how sugar status contributes to final seed or embryo size, we performed metabolic profiling of hand-dissected embryos at late torpedo and mature stages, and dormant seeds, in two Arabidopsis thaliana accessions with medium [Columbia-0 (Col-0)] and large [Burren-0 (Bur-0)] seed sizes, respectively. Our results show that, in both accessions, metabolite profiles of embryos largely differ from those of dormant seeds. We found that developmental transitions from torpedo to mature embryos, and further to dormant seeds, are associated with major metabolic switches in carbon reserve accumulation. While glucose, sucrose, and starch predominantly accumulated during seed dormancy, fructose levels were strongly elevated in mature embryos. Interestingly, Bur-0 seeds contain larger mature embryos than Col-0 seeds. Fructose and starch were accumulated to significantly higher levels in mature Bur-0 than Col-0 embryos, suggesting that they contribute to the enlarged mature Bur-0 embryos. Furthermore, we found that Bur-0 embryos accumulated a higher level of sucrose compared to hexose sugars and that changes in sucrose metabolism are mediated by sucrose synthase (SUS), with SUS genes acting non-redundantly, and in a tissue-specific manner to utilize sucrose during late embryogenesis.}, language = {en} } @article{YangPerreraSaplaouraetal.2019, author = {Yang, Lei and Perrera, Valentina and Saplaoura, Eleftheria and Apelt, Federico and Bahin, Mathieu and Kramdi, Amira and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Sokolowska, Ewelina and Zhang, Wenna and Li, Runsheng and Pitzalis, Nicolas and Heinlein, Manfred and Zhang, Shoudong and Genovesio, Auguste and Colot, Vincent and Kragler, Friedrich}, title = {m(5)C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {15}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.06.042}, pages = {2465 -- 2476.e5}, year = {2019}, abstract = {In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thalianam RNAs harboring the modified base 5-methylcytosine (m(5)C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m(5)C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.}, language = {en} } @article{RalevskiApeltOlasetal.2022, author = {Ralevski, Alexandra and Apelt, Federico and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Rugarli, Elena I. and Kragler, Friedrich and Horvath, Tamas L.}, title = {Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice}, series = {Cellular and molecular life sciences}, volume = {79}, journal = {Cellular and molecular life sciences}, number = {6}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-022-04382-3}, pages = {17}, year = {2022}, abstract = {Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.}, language = {en} }