@article{StoyanovKolloscheRisseetal.2011, author = {Stoyanov, Hristiyan and Kollosche, Matthias and Risse, Sebastian and McCarthy, Denis N. and Kofod, Guggi}, title = {Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm00715c}, pages = {194 -- 202}, year = {2011}, abstract = {Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host-guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20\%(vol). Strong improvements in actuation behaviour were observed, with an optimum near 15\%(vol) nanoparticles, corresponding to a reduction in electrical field of 27\% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior.}, language = {en} } @article{KolloscheStoyanovLaflammeetal.2011, author = {Kollosche, Matthias and Stoyanov, Hristiyan and Laflamme, Simon and Kofod, Guggi}, title = {Strongly enhanced sensitivity in elastic capacitive strain sensors}, series = {Journal of materials chemistry}, volume = {21}, journal = {Journal of materials chemistry}, number = {23}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c0jm03786a}, pages = {8292 -- 8294}, year = {2011}, abstract = {Strain sensors based on dielectric elastomer capacitors function by the direct coupling of mechanical deformations with the capacitance. The coupling can be improved by enhancing the relative permittivity of the dielectric elastomer. Here, this is carried out through the grafting of conducting polymer (poly-aniline) to the elastomer backbone, leading to molecular composites. An enhancement in capacitance response of 46 times is observed. This could help to extend the possible range of miniaturization towards even smaller device features.}, language = {en} } @article{KolloscheDoeringStumpeetal.2011, author = {Kollosche, Matthias and D{\"o}ring, Sebastian and Stumpe, Joachim and Kofod, Guggi}, title = {Voltage-controlled compression for period tuning of optical surface relief gratings}, series = {OPTICS LETTERS}, volume = {36}, journal = {OPTICS LETTERS}, number = {8}, publisher = {OPTICAL SOC AMER}, address = {WASHINGTON}, issn = {0146-9592}, pages = {1389 -- 1391}, year = {2011}, abstract = {This Letter reports on new methods and a consistent model for voltage tunable optical transmission gratings. Elastomeric gratings were molded from holographically written surface relief gratings in an azobenzene sol-gel material. These were placed on top of a transparent electroactive elastomeric substrate. Two different electro-active substrate elastomers were employed, with a large range of prestretches. A novel finite-deformation theory was found to match the device response excellently, without fitting parameters. The results clearly show that the grating underwent pure-shear deformation, and more surprisingly, that the mechanical properties of the electro-active substrate did not affect device actuation. (C) 2011 Optical Society of America}, language = {en} } @article{DoeringKolloscheRabeetal.2011, author = {D{\"o}ring, Sebastian and Kollosche, Matthias and Rabe, Torsten and Stumpe, Joachim and Kofod, Guggi}, title = {Electrically tunable polymer DFB laser}, series = {Advanced materials}, volume = {23}, journal = {Advanced materials}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201102465}, pages = {4265 -- 4269}, year = {2011}, language = {en} } @article{AhnertAbelKolloscheetal.2011, author = {Ahnert, Karsten and Abel, Markus and Kollosche, Matthias and Jorgensen, Per Jorgen and Kofod, Guggi}, title = {Soft capacitors for wave energy harvesting}, series = {Journal of materials chemistry}, volume = {21}, journal = {Journal of materials chemistry}, number = {38}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm12454d}, pages = {14492 -- 14497}, year = {2011}, abstract = {Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggled with the problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regions with optimal behavior are found, and novel material descriptors are determined, which dramatically simplify analysis. The characteristics of currently available materials are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.}, language = {en} }