@article{BommerCoppersmithCoppersmithetal.2015, author = {Bommer, Julian J. and Coppersmith, Kevin J. and Coppersmith, Ryan T. and Hanson, Kathryn L. and Mangongolo, Azangi and Neveling, Johann and Rathje, Ellen M. and Rodriguez-Marek, Adrian and Scherbaum, Frank and Shelembe, Refilwe and Stafford, Peter J. and Strasser, Fleur O.}, title = {A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {31}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {2}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/060913EQS145M}, pages = {661 -- 698}, year = {2015}, abstract = {A probabilistic seismic hazard analysis has been conducted for a potential nuclear power plant site on the coast of South Africa, a country of low-to-moderate seismicity. The hazard study was conducted as a SSHAC Level 3 process, the first application of this approach outside North America. Extensive geological investigations identified five fault sources with a non-zero probability of being seismogenic. Five area sources were defined for distributed seismicity, the least active being the host zone for which the low recurrence rates for earthquakes were substantiated through investigations of historical seismicity. Empirical ground-motion prediction equations were adjusted to a horizon within the bedrock at the site using kappa values inferred from weak-motion analyses. These adjusted models were then scaled to create new equations capturing the range of epistemic uncertainty in this region with no strong motion recordings. Surface motions were obtained by convolving the bedrock motions with site amplification functions calculated using measured shear-wave velocity profiles.}, language = {en} } @article{MussonToroCoppersmithetal.2005, author = {Musson, R. M. W. and Toro, G. R. and Coppersmith, Kevin J. and Bommer, Julian J. and Deichmann, N. and Bungum, Hilmar and Cotton, Fabrice and Scherbaum, Frank and Slejko, Dario and Abrahamson, Norman A.}, title = {Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel}, year = {2005}, abstract = {The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved}, language = {en} }