@unpublished{Keller2013, author = {Keller, Peter}, title = {Mathematical modeling of molecular motors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63045}, year = {2013}, abstract = {Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transport molecules and derive properties like the maximal run length and time. Furthermore we introduce permuted balance, which is a more flexible extension of the ordinary reversibility and introduce the notion of Time Duality, which compares certain passage times pathwise. We give a number of sufficient conditions for Time Duality based on the geometry of the transition graph. Both notions are closely related to properties of the killed Quasi-Random-Walk.}, language = {en} } @unpublished{KellerRoellyValleriani2012, author = {Keller, Peter and Roelly, Sylvie and Valleriani, Angelo}, title = {On time duality for quasi-birth-and-death processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56973}, year = {2012}, abstract = {We say that (weak/strong) time duality holds for continuous time quasi-birth-and-death-processes if, starting from a fixed level, the first hitting time of the next upper level and the first hitting time of the next lower level have the same distribution. We present here a criterion for time duality in the case where transitions from one level to another have to pass through a given single state, the so-called bottleneck property. We also prove that a weaker form of reversibility called balanced under permutation is sufficient for the time duality to hold. We then discuss the general case.}, language = {en} }