@misc{RojasJimenezRieckWurzbacheretal.2019, author = {Rojas-Jimenez, Keilor and Rieck, Angelika and Wurzbacher, Christian and J{\"u}rgens, Klaus and Labrenz, Matthias and Grossart, Hans-Peter}, title = {A Salinity Threshold Separating Fungal Communities in the Baltic Sea}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {739}, issn = {1866-8372}, doi = {10.25932/publishup-43493}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434937}, pages = {9}, year = {2019}, abstract = {Salinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world's largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 group (Cryptomycota) or by members of Ascomycota and Basidiomycota. Our results highlight salinity as an important environmental driver also for pelagic fungi, and thus should be taken into account to better understand fungal diversity and ecological function in the aquatic realm.}, language = {en} } @article{KettnerRojasJimenezOberbeckmannetal.2017, author = {Kettner, Marie Therese and Rojas-Jimenez, Keilor and Oberbeckmann, Sonja and Labrenz, Matthias and Grossart, Hans-Peter}, title = {Microplastics alter composition of fungal communities in aquatic ecosystems}, series = {Environmental microbiology}, volume = {19}, journal = {Environmental microbiology}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13891}, pages = {4447 -- 4459}, year = {2017}, abstract = {Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large.}, language = {en} } @article{RojasJimenezGrossartCordesetal.2020, author = {Rojas-Jimenez, Keilor and Grossart, Hans-Peter and Cordes, Erik and Cort{\´e}s, Jorge}, title = {Fungal Communities in Sediments Along a Depth Gradient in the Eastern Tropical Pacific}, series = {Frontiers in Microbiology}, volume = {11}, journal = {Frontiers in Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.575207}, pages = {9}, year = {2020}, abstract = {Deep waters represent the largest biome on Earth and the largest ecosystem of Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine sediments, yet, they remain little explored. We studied fungal diversity and community composition in several marine sediments from 16 locations sampled along a bathymetric gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length in the Eastern Tropical Pacific (ETP) of Costa Rica. Sequence analysis of the V7-V8 region of the 18S rRNA gene obtained from sediment cores revealed the presence of 787 fungal amplicon sequence variants (ASVs). On average, we detected a richness of 75 fungal ASVs per sample. Ascomycota represented the most abundant phylum with Saccharomycetes constituting the dominant class. Three ASVs accounted for ca. 63\% of all fungal sequences: the yeast Metschnikowia (49.4\%), Rhizophydium (6.9\%), and Cladosporium (6.7\%). We distinguished a cluster composed mainly by yeasts, and a second cluster by filamentous fungi, but we were unable to detect a strong effect of depth and the overlying water temperature, salinity, dissolved oxygen (DO), and pH on the composition of fungal communities. We highlight the need to understand further the ecological role of fungi in deep-sea ecosystems.}, language = {en} } @misc{AriasAndresRojasJimenezGrossart2018, author = {Arias-Andres, Maria and Rojas-Jimenez, Keilor and Grossart, Hans-Peter}, title = {Collateral effects of microplastic pollution on aquatic microorganisms}, series = {Trends in Analytical Chemistry}, volume = {112}, journal = {Trends in Analytical Chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0165-9936}, doi = {10.1016/j.trac.2018.11.041}, pages = {234 -- 240}, year = {2018}, abstract = {Microplastics (MP) provide a unique and extensive surface for microbial colonization in aquatic ecosystems. The formation of microorganism-microplastic complexes, such as biofilms, maximizes the degradation of organic matter and horizontal gene transfer. In this context, MP affect the structure and function of microbial communities, which in turn render the physical and chemical fate of MP. This new paradigm generates challenges for microbiology, ecology, and ecotoxicology. Dispersal of MP is concomitant with that of their associated microorganisms and their mobile genetic elements, including antibiotic resistance genes, islands of pathogenicity, and diverse metabolic pathways. Functional changes in aquatic microbiomes can alter carbon metabolism and food webs, with unknown consequences on higher organisms or human microbiomes and hence health. Here, we examine a variety of effects of MP pollution from the microbial ecology perspective, whose repercussions on aquatic ecosystems begin to be unraveled. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{VandenWyngaertSetoRojasJimenezetal.2017, author = {Van den Wyngaert, Silke and Seto, Kensuke and Rojas-Jimenez, Keilor and Kagami, Maiko and Grossart, Hans-Peter}, title = {A New Parasitic Chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromy-cetaceae fam. nov.), Infecting the Freshwater Desmid Staurastrum sp.}, series = {Protist}, volume = {168}, journal = {Protist}, publisher = {Elsevier}, address = {Jena}, issn = {1434-4610}, doi = {10.1016/j.protis.2017.05.001}, pages = {392 -- 407}, year = {2017}, abstract = {Chytrids are a diverse group of ubiquitous true zoosporic fungi. The recent molecular discovery of a large diversity of undescribed chytrids has raised awareness on their important, but so far understudied ecological role in aquatic ecosystems. In the pelagic zone, of both freshwater and marine ecosystems, many chytrid species have been morphologically described as parasites on almost all major groups of phytoplankton. However, the majority of these parasitic chytrids has rarely been isolated and lack DNA sequence data, resulting in a large proportion of "dark taxa" in databases. Here, we report on the isolation and in-depth morphological, molecular and host range characterization of a chytrid infecting the common freshwater desmid Staurastrum sp. We provide first insights on the metabolic activity of the different chytrid development stages by using the vital dye FUN (R)-1 (2-chloro-4-[2,3-dihydro-3-methyl-[benzo-1,3-thiazol-2-yl]-methylidene]-1-phenylquinolinium iodide). Cross infection experiments suggest that this chytrid is an obligate parasite and specific for the genus Staurastrum sp. Phylogenetic analysis, based on ITS1-5.8S-ITS2 and 28S rDNA sequences, placed it in the order Rhizophydiales. Based on the unique zoospore ultrastructure, combined with thallus morphology, and molecular phylogenetic placement, we describe this parasitic chytrid as a new genus and species Staurastromyces oculus, within a new family Staurastromycetaceae. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{AriasAndresKluemperRojasJimenezetal.2018, author = {Arias-Andres, Maria and Kluemper, Uli and Rojas-Jimenez, Keilor and Grossart, Hans-Peter}, title = {Microplastic pollution increases gene exchange in aquatic ecosystems}, series = {Environmental pollution}, volume = {237}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2018.02.058}, pages = {253 -- 261}, year = {2018}, abstract = {Pollution by microplastics in aquatic ecosystems is accumulating at an unprecedented scale, emerging as a new surface for biofilm formation and gene exchange. In this study, we determined the permissiveness of aquatic bacteria towards a model antibiotic resistance plasmid, comparing communities that form biofilms on microplastics vs. those that are free-living. We used an exogenous and red-fluorescent E. coli donor strain to introduce the green-fluorescent broad-host-range plasmid pKJKS which encodes for trimethoprim resistance. We demonstrate an increased frequency of plasmid transfer in bacteria associated with microplastics compared to bacteria that are free-living or in natural aggregates. Moreover, comparison of communities grown on polycarbonate filters showed that increased gene exchange occurs in a broad range of phylogenetically-diverse bacteria. Our results indicate horizontal gene transfer in this habitat could distinctly affect the ecology of aquatic microbial communities on a global scale. The spread of antibiotic resistance through microplastics could also have profound consequences for the evolution of aquatic bacteria and poses a neglected hazard for human health.}, language = {en} } @article{RojasJimenezFonvielleMaetal.2017, author = {Rojas-Jimenez, Keilor and Fonvielle, Jeremy Andre and Ma, Hua and Grossart, Hans-Peter}, title = {Transformation of humic substances by the freshwater Ascomycete Cladosporium sp.}, series = {Waterbird}, volume = {40}, journal = {Waterbird}, publisher = {Waterbird SOC}, address = {Washington}, issn = {1524-4695}, doi = {10.1002/lno.10545}, pages = {282 -- 288}, year = {2017}, abstract = {The ecological relevance of fungi in freshwater ecosystems is becoming increasingly evident, particularly in processing the extensive amounts of polymeric organic carbon such as cellulose, chitin, and humic substances (HS). We isolated several fungal strains from oligo-mesotrophic Lake Stechlin, Brandenburg, Germany, and analyzed their ability to degrade polymeric-like substrates. Using liquid chromatography-organic carbon detection, we determined the byproducts of HS transformation by the freshwater fungus Cladosporium sp. KR14. We demonstrate the ability of this fungus to degrade and simultaneously synthesize HS, and that transformation processes were intensified when iron, as indicator of the occurrence of Fenton reactions, was present in the medium. Furthermore, we showed that structural complexity of the HS produced changed with the availability of other polymeric substances in the medium. Our study highlights the contribution of freshwater Ascomycetes to the transformation of complex organic compounds. As such, it has important implications for understanding the ecological contribution of fungi to aquatic food webs and related biogeochemical cycles.}, language = {en} } @article{VandenWyngaertRojasJimenezSetoetal.2018, author = {Van den Wyngaert, Silke and Rojas-Jimenez, Keilor and Seto, Kensuke and Kagami, Maiko and Grossart, Hans-Peter}, title = {Diversity and Hidden Host Specificity of Chytrids Infecting Colonial Volvocacean Algae}, series = {Journal of Eukaryotic Microbiology}, volume = {65}, journal = {Journal of Eukaryotic Microbiology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1066-5234}, doi = {10.1111/jeu.12632}, pages = {870 -- 881}, year = {2018}, abstract = {Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. To identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross-infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schroder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general.}, language = {en} } @article{MasigolKhodaparastMostowfizadehGhalamfarsaetal.2020, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Mostowfizadeh-Ghalamfarsa, Reza and Rojas-Jimenez, Keilor and Woodhouse, Jason Nicholas and Neubauer, Darshan and Grossart, Hans-Peter}, title = {Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran}, series = {Aquatic Ecology}, volume = {54}, journal = {Aquatic Ecology}, number = {1}, publisher = {Springer Science}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-019-09745-w}, pages = {323 -- 336}, year = {2020}, abstract = {Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50\% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems.}, language = {en} } @article{VandenWyngaertGanzertSetoetal.2022, author = {Van den Wyngaert, Silke and Ganzert, Lars and Seto, Kensuke and Rojas-Jimenez, Keilor and Agha, Ramsy and Berger, Stella A. and Woodhouse, Jason and Padisak, Judit and Wurzbacher, Christian and Kagami, Maiko and Grossart, Hans-Peter}, title = {Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits}, series = {ISME journal}, volume = {16}, journal = {ISME journal}, number = {9}, publisher = {Springer Nature}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-022-01267-y}, pages = {2242 -- 2254}, year = {2022}, abstract = {Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.}, language = {en} }