@article{KoschorreckFroemmichenHerzsprungetal.2002, author = {Koschorreck, Matthias and Fr{\"o}mmichen, Ren{\´e} and Herzsprung, Peter and Tittel, J{\"o}rg and Wendt-Potthoff, Katrin}, title = {Function of straw for in situ remediation of acidic mining lakes}, issn = {0049-6979}, year = {2002}, language = {en} } @article{KlapperBoehrerPackroffetal.2001, author = {Klapper, H. and Boehrer, Bertram and Packroff, G. and Schultze, M. and Tittel, J{\"o}rg and Wendt-Potthoff, Katrin}, title = {Bergbaufolgegew{\"a}sser}, year = {2001}, language = {de} } @article{DunkerBoydDurkaetal.2022, author = {Dunker, Susanne and Boyd, Matthew and Durka, Walter and Erler, Silvio and Harpole, W. Stanley and Henning, Silvia and Herzschuh, Ulrike and Hornick, Thomas and Knight, Tiffany and Lips, Stefan and M{\"a}der, Patrick and Švara, Elena Motivans and Mozarowski, Steven and Rakosy, Demetra and R{\"o}mermann, Christine and Schmitt-Jansen, Mechthild and Stoof-Leichsenring, Kathleen and Stratmann, Frank and Treudler, Regina and Virtanen, Risto and Wendt-Potthoff, Katrin and Wilhelm, Christian}, title = {The potential of multispectral imaging flow cytometry for environmental monitoring}, series = {Cytometry part A}, volume = {101}, journal = {Cytometry part A}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1552-4922}, doi = {10.1002/cyto.a.24658}, pages = {782 -- 799}, year = {2022}, abstract = {Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.}, language = {en} }