@book{HermannsBoehmeMeyeringetal.2023, author = {Hermanns, Jolanda and B{\"o}hme, Katrin and Meyering, Meike and Fuchs, Isabelle and Wagner, Simon and Krauskopf, Karsten and Knigge, Michel and Rother, Stefanie and Tosch, Frank and Wendland, Mirko and Wulff, Peter and Mientus, Lukas and Nowak, Anna and Borowski, Andreas and Baer, Ella and Bosch, Jannis and Wilbert, J{\"u}rgen and Br{\"a}sel, Tim and Fenn, Monika and Kortenkamp, Ulrich and Kuzle, Ana and Reitz-Koncebovski, Karen and Burg, Paula and Lampart, Fabian and Leubner, Martin and Freitag-Hild, Britta and Bitmann, Anna and Reinhardt, Susanne and Roos, Jana and Hußner, Isabell and B{\"o}rner, Dustin and Lazarides, Rebecca and Glowinski, Ingrid and Autenrieth, Marijke and Radke, Thea and Ehlert, Antje and Menke, Anne and Haupenthal, Anna and Schramm, Satyam Antonio and Kruse, Julia and K{\"o}rner, Dorothea and Fischer, Jakob Thomas and Kayser, Daniela Niesta}, title = {PSI-Potsdam}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {3}, editor = {Hermanns, Jolanda}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-568-2}, issn = {2626-3556}, doi = {10.25932/publishup-60187}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601875}, publisher = {Universit{\"a}t Potsdam}, pages = {393}, year = {2023}, abstract = {An der Universit{\"a}t Potsdam wird seit 2015 im Rahmen der „Qualit{\"a}tsoffensive Lehrerbildung" das Projekt „Professionalisierung - Schulpraktische Studien - Inklusion" (PSI-Potsdam) durchgef{\"u}hrt und am Zentrum f{\"u}r Lehrerbildung und Bildungsforschung (ZeLB) koordiniert. Zur ersten Projektf{\"o}rderphase (2015-2018) erschien der Band „PSI-Potsdam - Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2015-2018)" zum Auftakt der Reihe „Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung". Der vorliegende Band aus der gleichen Reihe gibt in den Kapiteln „Erhebungen", „Lehrkonzepte" und „Vernetzungen" einen {\"U}berblick {\"u}ber alle Teilprojekte der zweiten Projektf{\"o}rderphase (2019-2023). Wissenschaftler:innen aus verschiedenen Fachdidaktiken, Fachwissenschaften sowie aus den Bildungswissenschaften und der Inklusionsp{\"a}dagogik haben im Rahmen des Projektes kooperiert. Sowohl praxisnahe Forschung als auch die Entwicklung neuer Lehrkonzepte sowie Strategien zur Vernetzung innerhalb der Lehrkr{\"a}ftebildung stehen im Fokus dieses Bandes. Die Praxisphasen, die im Rahmen des „Potsdamer Modells der Lehrerbildung" eine zentrale Rolle spielen, wurden in einer großen Studie {\"u}ber alle Praxisphasen untersucht. Der Band gibt interessante Einblicke in die Ergebnisse der Teilprojekte und Anregungen sowohl f{\"u}r die eigene Forschung als auch f{\"u}r Entwicklungsarbeit wie zum Beispiel die Entwicklung neuer Lehrkonzepte. Herausgegeben wird dieser Band von PD Dr. Jolanda Hermanns (Gesamtkoordinatorin PSI-Potsdam und Chemiedidaktikerin).}, language = {de} } @book{FuhrmannSchubarthSchulzeReicheltetal.2019, author = {Fuhrmann, Michaela and Schubarth, Wilfried and Schulze-Reichelt, Friederike and Mauermeister, Sylvi and Seidel, Andreas and Hartmann, Nina and Erdmann, Melinda and Apostolow, Benjamin and Wagner, Laura and Berndt, Sarah and Wippermann, Melanie and Ratzlaff, Olaf and Lumpe, Matthias and Kirjuchina, Ljuba and Rost, Sophia and Zurek, Peter Paul and Faaß, Marcel and Schellhorn, Sebastian and Frank, Mario and Kreitz, Christoph and Wagner, Nelli and Jenneck, Julia and Kleemann, Katrin and Vock, Miriam and Schr{\"o}der, Christian and Erdmann, Kathrin and Koziol, Matthias and Meißner, Marlen and Dibiasi, Anna and Unger, Martin and Piskunova, Elena V. and Bahmutskiy, Andrey E. and Bessonova, Ekatarina A. and Borovik, Ludmila K.}, title = {Alles auf Anfang!}, series = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, journal = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, number = {4}, editor = {Schubarth, Wilfried and Mauermeister, Sylvi and Schulze-Reichelt, Friederike and Seidel, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-452-4}, issn = {2192-1075}, doi = {10.25932/publishup-42296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422965}, publisher = {Universit{\"a}t Potsdam}, pages = {373}, year = {2019}, abstract = {Im Zuge der Bologna-Reform ist an Hochschulen vieles in Bewegung gekommen. Studium und Lehre sind st{\"a}rker ins Blickfeld ger{\"u}ckt. Dabei kommt der Studieneingangsphase besondere Bedeutung zu, werden doch hier die Weichen f{\"u}r ein erfolgreiches Studium gestellt. Deshalb ist es verst{\"a}ndlich, dass die Hauptanstrengungen der Hochschulen auf den Studieneingang gerichtet sind - ganz nach dem Motto: „Auf den Anfang kommt es an!". Konsens herrscht dahingehend, dass der Studieneingang neu zu gestalten ist, doch beim „Wie?" gibt es unterschiedliche Antworten. Zugleich wird immer deutlicher, dass eine wirksame Neugestaltung der Eingangsphase nur mit einer umfassenden Reform des Studiums gelingen kann. Ziel des vierten Bandes der Potsdamer Beitr{\"a}ge zur Hochschulforschung ist es, eine Zwischenbilanz der Debatte zum Studieneingang zu ziehen. Auf der Basis empirischer Studien werden unterschiedliche Perspektiven auf den Studieneingang eingenommen und Empfehlungen zur Optimierung des Studieneingangs abgeleitet. Die zahlreichen Untersuchungsergebnisse Potsdamer Forschergruppen werden durch weitere nationale sowie internationale Perspektiven erg{\"a}nzt. Der Band richtet sich an alle, die sich f{\"u}r die Entwicklung an Hochschulen interessieren.}, language = {de} } @article{KruegerDahmHannemann2020, author = {Kr{\"u}ger, Frank and Dahm, Torsten and Hannemann, Katrin}, title = {Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array}, series = {Geophysical journal international}, volume = {221}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa054}, pages = {1055 -- 1080}, year = {2020}, abstract = {A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity.}, language = {en} } @article{HannemannEulenfeldKruegeretal.2021, author = {Hannemann, Katrin and Eulenfeld, Tom and Kr{\"u}ger, Frank and Dahm, Torsten}, title = {Seismic scattering and absorption of oceanic lithospheric S waves in the Eastern North Atlantic}, series = {Geophysical journal international}, volume = {229}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggab493}, pages = {948 -- 961}, year = {2021}, abstract = {The scattering and absorption of high-frequency seismic waves in the oceanic lithosphere is to date only poorly constrained by observations. Such estimates would not only improve our understanding of the propagation of seismic waves, but also unravel the small-scale nature of the lithosphere and its variability. Our study benefits from two exceptional situations: (1) we deployed over 10 months a mid-aperture seismological array in the central part of the Eastern North Atlantic in 5 km water depth and (2) we could observe in total 340 high-frequency (up to 30 Hz) Po and So arrivals with tens to hundreds of seconds long seismic coda from local and regional earthquakes in a wide range of backazimuths and epicentral distances up to 850 km with a travel path in the oceanic lithosphere. Moreover, the array was located about 100 km north of the Gloria fault, defining the plate boundary between the Eurasian and African plates at this location which also allows an investigation of the influence of an abrupt change in lithospheric age (20 Ma in this case) on seismic waves. The waves travel with velocities indicating upper-mantle material. We use So waves and their coda of pre-selected earthquakes to estimate frequency-dependent seismic scattering and intrinsic attenuation parameters. The estimated scattering attenuation coefficients are between 10(-4) and 4 x 10(-5) m(-1) and are typical for the lithosphere or the upper mantle. Furthermore, the total quality factors for So waves below 5 Hz are between 20 and 500 and are well below estimates from previous modelling for observations in the Pacific Ocean. This implies that the Atlantic Ocean is more attenuative for So waves compared to the Pacific Ocean, which is inline with the expected behaviour for the lithospheric structures resulting from the slower spreading rates in the Atlantic Ocean. The results for the analysed events indicate that for frequencies above 3 Hz, intrinsic attenuation is equal to or slightly stronger than scattering attenuation and that the So-wave coda is weakly influenced by the oceanic crust. Both observations are in agreement with the proposed propagation mechanism of scattering in the oceanic mantle lithosphere. Furthermore, we observe an age dependence which shows that an increase in lithospheric age is associated with a decrease in attenuation. However, we also observe a trade-off of this age-dependent effect with either a change in lithospheric thickness or thermal variations, for example due to small-scale upwellings in the upper mantle in the southeast close to Madeira and the Canaries. Moreover, the influence of the nearby Gloria fault is visible in a reduction of the intrinsic attenuation below 3 Hz for estimates across the fault. This is the first study to estimate seismic scattering and absorption parameters of So waves for an area with several hundreds of kilometres radius centred in the Eastern North Atlantic and using them to characterize the nature of the oceanic lithosphere.}, language = {en} } @article{HannemannKruegerDahm2014, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten}, title = {Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt434}, pages = {1034 -- 1042}, year = {2014}, abstract = {Marine seismology usually relies on temporary deployments of stand alone seismic ocean bottom stations (OBS), which are initialized and synchronized on ship before deployment and re-synchronized and stopped on ship after recovery several months later. In between, the recorder clocks may drift and float at unknown rates. If the clock drifts are large or not linear and cannot be corrected for, seismological applications will be limited to methods not requiring precise common timing. Therefore, for example, array seismological methods, which need very accurate timing between individual stations, would not be applicable for such deployments. We use an OBS test-array of 12 stations and 75 km aperture, deployed for 10 months in the deep sea (4.5-5.5 km) of the mid-eastern Atlantic. The experiment was designed to analyse the potential of broad-band array seismology at the seafloor. After recovery, we identified some stations which either show unusual large clock drifts and/or static time offsets by having a large difference between the internal clock and the GPS-signal (skew). We test the approach of ambient noise cross-correlation to synchronize clocks of a deep water OBS array with km-scale interstation distances. We show that small drift rates and static time offsets can be resolved on vertical components with a standard technique. Larger clock drifts (several seconds per day) can only be accurately recovered if time windows of one input trace are shifted according to the expected drift between a station pair before the cross-correlation. We validate that the drifts extracted from the seismometer data are linear to first order. The same is valid for most of the hydrophones. Moreover, we were able to determine the clock drift at a station where no skew could be measured. Furthermore, we find that instable apparent drift rates at some hydrophones, which are uncorrelated to the seismometer drift recorded at the same digitizer, indicate a malfunction of the hydrophone.}, language = {en} } @article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tom{\´a}š and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tom{\´a}š and Ohrnberger, Matthias and Vlček, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and Kaempf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific drilling : reports on deep earth sampling and monitoring}, volume = {31}, journal = {Scientific drilling : reports on deep earth sampling and monitoring}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nov{\´y} Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Lib{\´a}. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tomas and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tomas and Ohrnberger, Matthias and Vlcek, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and K{\"a}mpf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific Drilling}, volume = {31}, journal = {Scientific Drilling}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{HannemannKruegerDahmetal.2016, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten and Lange, Dietrich}, title = {Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor}, series = {Geophysical journal international}, volume = {207}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw342}, pages = {1796 -- 1817}, year = {2016}, abstract = {Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s(-1). The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s(-1). We find a slight increase of the total crustal thickness from similar to 5 to similar to 8 km towards the South in the direction of a major plate boundary, the Gloria Fault. The observed crustal thickening can be related with the known dominant compression in the vicinity of the fault. Furthermore, the resulting mantle S-wave velocities decrease from values around 5.5 to 4.5 km s(-1) towards the fault. This decrease is probably caused by serpentinization and indicates that the oceanic transform fault affects a broad region in the uppermost mantle. Conclusively, the presented method is useful for the estimation of the local S-wave velocity structure beneath ocean bottom seismic stations. It is easy to implement and consists of two main steps: (1) measurement of apparent P-wave incidence angles in different period ranges for real and synthetic data, and (2) comparison of the determined apparent S-wave velocities for real and synthetic data to estimate S-wave velocity-depth models.}, language = {en} } @misc{NiedererVogtWippertetal.2016, author = {Niederer, Daniel and Vogt, Lutz and Wippert, Pia-Maria and Puschmann, Anne-Katrin and Pfeifer, Ann-Christin and Schiltenwolf, Marcus and Banzer, Winfried and Mayer, Frank}, title = {Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407308}, pages = {9}, year = {2016}, abstract = {Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires - clinical examination - biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain. Trial registration: Identification number DRKS00010129. German Clinical Trial registered on 3 March 2016.}, language = {en} } @misc{WippertPuschmannArampatzisetal.2018, author = {Wippert, Pia-Maria and Puschmann, Anne-Katrin and Arampatzis, Adamantios and Schiltenwolf, Marcus and Mayer, Frank}, title = {Diagnosis of psychosocial risk factors in prevention of low back pain in athletes (MiSpEx)}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407391}, year = {2018}, abstract = {Background Low back pain (LBP) is a common pain syndrome in athletes, responsible for 28\% of missed training days/year. Psychosocial factors contribute to chronic pain development. This study aims to investigate the transferability of psychosocial screening tools developed in the general population to athletes and to define athlete-specific thresholds. Methods Data from a prospective multicentre study on LBP were collected at baseline and 1-year follow-up (n=52 athletes, n=289 recreational athletes and n=246 non-athletes). Pain was assessed using the Chronic Pain Grade questionnaire. The psychosocial Risk Stratification Index (RSI) was used to obtain prognostic information regarding the risk of chronic LBP (CLBP). Individual psychosocial risk profile was gained with the Risk Prevention Index - Social (RPI-S). Differences between groups were calculated using general linear models and planned contrasts. Discrimination thresholds for athletes were defined with receiver operating characteristics (ROC) curves. Results Athletes and recreational athletes showed significantly lower psychosocial risk profiles and prognostic risk for CLBP than non-athletes. ROC curves suggested discrimination thresholds for athletes were different compared with non-athletes. Both screenings demonstrated very good sensitivity (RSI=100\%; RPI-S: 75\%-100\%) and specificity (RSI: 76\%-93\%; RPI-S: 71\%-93\%). RSI revealed two risk classes for pain intensity (area under the curve (AUC) 0.92(95\% CI 0.85 to 1.0)) and pain disability (AUC 0.88(95\% CI 0.71 to 1.0)). Conclusions Both screening tools can be used for athletes. Athlete-specific thresholds will improve physicians' decision making and allow stratified treatment and prevention.}, language = {en} }