@book{BeckmannBergmannTitosetal.2019, author = {Beckmann, Susanne and Bergmann, Valentin Friedrich and Titos, Marcos Bolivar and Brzezina, Claudia and Elke, Katrin and Falky, Paulina and Jahnke, Nadja and Janke, Stefan and Kubitz, Robert and Lesinski, Theresa and Pelz, Klara and Schmid, Vincent Leonhard and Schulz, Laura and Spiller, Friedrich and Weskamp, Madeleine and Wille, Johanna and Zenk, Johannes}, title = {Wege entstehen beim Gehen}, editor = {Bossen, Anja}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-443-2}, doi = {10.25932/publishup-43428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434284}, publisher = {Universit{\"a}t Potsdam}, pages = {60}, year = {2019}, abstract = {Musicalarbeit in der Schule, vom Mini-Musical bis hin zu groß angelegten Schulmusicals, erfreut sich sowohl bei Sch{\"u}lerinnen und Sch{\"u}lern als auch bei Musiklehrkr{\"a}ften großer Beliebtheit und eines oftmals außerordentlichen, teils auch untersch{\"a}tzten Engagements. Dessen ungeachtet gibt es nur wenig musikdidaktische Fachliteratur zu diesem Thema und es liegen bislang nur wenige Forschungsarbeiten vor, die wegweisend f{\"u}r die Umsetzung von Musicalprojekten an Schulen sind. Auch in der Musiklehrerbildung spielt Musicalarbeit nur eine marginale Rolle. Die vorliegende Publikation m{\"o}chte dazu beitragen, diese L{\"u}cke zu verringern. Sie ist das Ergebnis des Masterseminars „Musicalarbeit in der Schule" am Lehrstuhl f{\"u}r Musikp{\"a}dagogik und Musikdidaktik der Universit{\"a}t Potsdam, das begleitend zur k{\"u}nstlerischen Erarbeitung des Musicals „Elion" durch Studierende der Universit{\"a}t Potsdam im Sommersemester 2018 stattfand. Im Zentrum des Seminars standen p{\"a}dagogische sowie methodisch-didaktische Fragestellungen in den Bereichen Gesang, Choreografie und Theaterarbeit. Des Weiteren wurden M{\"o}glichkeiten und p{\"a}dagogische Potenziale fach{\"u}bergreifenden und f{\"a}cherverbindenden Arbeitens er{\"o}rtert. Zu diesem Seminar wurden Musicalexperten aus verschiedenen schulischen Kontexten eingeladen, die den Studierenden Einblicke in ihre langj{\"a}hrigen Praxiserfahrungen gew{\"a}hrten und ihre Erfahrungen zur Diskussion stellten. Die vorliegende Publikation wurde abschließend von den Seminarteilnehmern selbst erarbeitet und stellt eine Zusammenfassung des Seminars dar. Sie versteht sich als Entscheidungshilfe f{\"u}r oder gegen Musicalarbeit in der Schule und als Leitfaden f{\"u}r den Einstieg in die Praxis.}, language = {de} } @article{NajafpourHillierShamkhalietal.2012, author = {Najafpour, Mohammad Mahdi and Hillier, Warwick and Shamkhali, Amir Nasser and Amini, Mojtaba and Beckmann, Katrin and Jaglicic, Zvonko and Jagodic, Marko and Strauch, Peter and Moghaddam, Atefeh Nemati and Beretta, Giangiacomo and Bagherzadeh, Mojtaba}, title = {Synthesis, characterization, DFT studies and catalytic activities of manganese(II) complex with 1,4-bis(2,2 ':6,2 ''-terpyridin-4 '-yl) benzene}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {41}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c2dt31544k}, pages = {12282 -- 12288}, year = {2012}, abstract = {A new di-manganese complex with "back-to-back" 1,4-bis(2,2':6,2 ''-terpyridin-4'-yl) benzene ligation has been synthesized and characterised by a variety of techniques. The back-to-back ligation presents a novel new mononuclear manganese catalytic centre that functions as a heterogeneous catalysis for the evolution of oxygen in the presence of an exogenous oxidant. We discuss the synthesis and spectroscopic characterizations of this complex and propose a mechanism for oxygen evolution activity of the compound in the presence of oxone. The di-manganese complex also shows efficient and selective catalytic oxidation of sulfides in the presence of H2O2. Density functional theory calculations were used to assess the structural optimization of the complex and a proposed reaction pathway with oxone. The calculations show that middle benzene ring is distorted respect to both of metallic centers, and this in turn leads to negligible resonance of electrons between two sides of complex. The calculations also indicate the unpaired electron located on oxyl-ligand emphasizes the radical mechanism of water oxidation for the system.}, language = {en} } @misc{BeckmannBeckerKadowetal.2019, author = {Beckmann, Nadine and Becker, Katrin Anne and Kadow, Stephanie and Schumacher, Fabian and Kramer, Melanie and K{\"u}hn, Claudine and Schulz-Schaeffer, Walter J. and Edwards, Michael J. and Kleuser, Burkhard and Gulbins, Erich and Carpinteiro, Alexander}, title = {Acid sphingomyelinase deficiency ameliorates Farber disease}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1087}, issn = {1866-8372}, doi = {10.25932/publishup-44128}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441282}, pages = {20}, year = {2019}, abstract = {Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can't achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients}, language = {en} } @article{BeckmannKadowSchumacheretal.2018, author = {Beckmann, Nadine and Kadow, Stephanie and Schumacher, Fabian and Goethert, Joachim R. and Kesper, Stefanie and Draeger, Annette and Schulz-Schaeffer, Walter J. and Wang, Jiang and Becker, Jan U. and Kramer, Melanie and Kuehn, Claudine and Kleuser, Burkhard and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Pathological manifestations of Farber disease in a new mouse model}, series = {Biological chemistry}, volume = {399}, journal = {Biological chemistry}, number = {10}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2018-0170}, pages = {1183 -- 1202}, year = {2018}, abstract = {Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.}, language = {en} } @article{BeckmannBeckerKadowetal.2019, author = {Beckmann, Nadine and Becker, Katrin Anne and Kadow, Stephanie and Schumacher, Fabian and Kramer, Melanie and Kuehn, Claudine and Schulz-Schaeffer, Walter J. and Edwards, Michael J. and Kleuser, Burkhard and Gulbins, Erich and Carpinteiro, Alexander}, title = {Acid Sphingomyelinase Deficiency Ameliorates Farber Disease}, series = {International journal of molecular sciences}, volume = {20}, journal = {International journal of molecular sciences}, number = {24}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20246253}, pages = {18}, year = {2019}, abstract = {Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can't achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.}, language = {en} }