@article{JeltschBlaumBroseetal.2013, author = {Jeltsch, Florian and Blaum, Niels and Brose, Ulrich and Chipperfield, Joseph D. and Clough, Yann and Farwig, Nina and Geissler, Katja and Graham, Catherine H. and Grimm, Volker and Hickler, Thomas and Huth, Andreas and May, Felix and Meyer, Katrin M. and Pagel, J{\"o}rn and Reineking, Bj{\"o}rn and Rillig, Matthias C. and Shea, Katriona and Schurr, Frank Martin and Schroeder, Boris and Tielb{\"o}rger, Katja and Weiss, Lina and Wiegand, Kerstin and Wiegand, Thorsten and Wirth, Christian and Zurell, Damaris}, title = {How can we bring together empiricists and modellers in functional biodiversity research?}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.01.001}, pages = {93 -- 101}, year = {2013}, abstract = {Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs.}, language = {en} } @article{GeisslerMuehleGzik2005, author = {Geißler, Katja and M{\"u}hle, Ralf-Udo and Gzik, Axel}, title = {Cnidium dubium und Microtus arvalis : eine Pflanze-Konsument-Interaktion der Unteren Havelaue in Abh{\"a}ngigkeit von der wurzelb{\"u}rtigen Assimilationsspeicherung}, year = {2005}, language = {de} } @phdthesis{Geissler2008, author = {Geißler, Katja}, title = {Lebensstrategien seltener Stromtalpflanzen : aut{\"o}kologische Untersuchung von Cnidium dubium, Gratiola officinalis und Juncus atratus unter besonderer Ber{\"u}cksichtigung ihrer Stressresistenz}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17468}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Die vorliegende Dissertation behandelt die {\"O}kologie von Cnidium dubium (Schkuhr) Thell. (Sumpf-Brenndolde), Gratiola officinalis L. (Gottes-Gnadenkraut) und Juncus atratus Krocker (Schwarze Binse), drei gef{\"a}hrdeten Arten, die als sogenannte Stromtalpflanzen in Mitteleuropa in ihrem Vorkommen eng an die Flussauen gebunden sind. Die Arbeit basiert auf verschiedenen Simulationsexperimenten und Feldstudien in der Unteren Havelniederung, einem „Feuchtgebiet von internationaler Bedeutung". Sie behandelt Themenkomplexe wie das Samenbankverhalten, die Samenkeimung, die Stickstofflimitierung, die Konkurrenzkraft, das Verhalten der Pflanzen nach einer Sommertrockenheit und nach einer Winter/Fr{\"u}hjahrs{\"u}berflutung. Ferner widmet sie sich der Populationsbiologie der Arten und dem Verhalten der Pflanzen nach besonderen St{\"o}rungsereignissen wie Mahd, Herbivorie und der Sommerflut 2002. Der Leser erf{\"a}hrt, wie die Pflanzen in verschiedenen Lebensphasen auf die auentypische Umwelt reagieren und erh{\"a}lt umfassende Einblicke in physiologische Mechanismen, die der Anpassung an die typischen Bedingungen einer mitteleurop{\"a}ischen Flussaue dienen. Eine Interpretation der Ergebnisse zeigt auf, welche der spezifischen Eigenschaften zur Gef{\"a}hrdung der drei Stromtalarten beitragen. Die Arbeit ist f{\"u}r den Arten-, Biotop- und Landschaftsschutz interessant. Dar{\"u}ber hinaus bietet sie zahlreiche Ankn{\"u}pfungspunkte zur {\"o}kophysiologischen Grundlagenforschung. Die verst{\"a}rkte Nutzung physiologischer Methoden bei der Kl{\"a}rung {\"o}kologischer Fragestellungen wird angeregt.}, language = {de} } @article{GeisslerGzik2010, author = {Geissler, Katja and Gzik, Axel}, title = {Germination ecology of three endangered river corridor plants in relation to their preferred occurrence}, issn = {0367-2530}, doi = {10.1016/j.flora.2010.04.008}, year = {2010}, abstract = {As a contribution to conservation, we investigated germination requirements of three perennial, endangered river corridor plants of Central European lowlands coexisting in subcontinental flood meadows, but preferring particular zones of decreasing flooding frequency and duration along the elevational gradient of the banks. It was hypothesized that the species have specific germination requirements to respond successfully to open patch creation depending on their occurrence along the gradient of spring flooding in the field. This study involved controlled experiments and phenological studies. Juncus atratus and Gratiola officinalis, which frequently occupy flooded, naturally disturbed sites, have an absolute light requirement for germination, typical of pioneer species. Summer-dispersed, non-dormant seeds off. atratus did hardly germinate at high temperatures and lacked a gap sensitivity based on temperature fluctuation. Since the temperature amplitude decreases beneath an insulating cover of vegetation or water, seeds seem to be prepared for rapid germination at open, wet, maybe even inundated sites. Late-summer-dispersed seeds of G. officinalis were in a state of conditional primary dormancy. Dormancy could be completely broken by cold-wet stratification, indicating spring germination. Similar to J. atratus, daily temperature fluctuations did not control germination at suitable microsites. In Cnidium dubium that occurs at higher elevated sites, the level of primary dormancy of seeds was sufficient to prevent germination following dispersal, but the level was dependent on the year of harvest. Buried seeds showed an annual dormancy/conditional dormancy cycle. Dormancy was only partially broken by cold- wet stratification. It was completely broken by application of a high concentration of gibberellic acid. C. dubium had no absolute light requirement for germination, but it was stimulated by high light levels and in contrast to the other two species, seeds were stimulated by daily temperature fluctuations. Germination would therefore be maximized by zaps in early spring when the flooding water has receded. Re-entering dormancy in the late spring fails to support that germination occurs immediately after early-summer mowing - an important factor at subcontinental flood meadows.}, language = {en} } @article{SchaldachWimmerKochetal.2013, author = {Schaldach, R{\"u}diger and Wimmer, Florian and Koch, Jennifer and Volland, Jan and Geissler, Katja and K{\"o}chy, Martin}, title = {Model-based analysis of the environmental impacts of grazing management on Eastern Mediterranean ecosystems in Jordan}, series = {Journal of environmental management}, volume = {127}, journal = {Journal of environmental management}, number = {9}, publisher = {Elsevier}, address = {London}, issn = {0301-4797}, doi = {10.1016/j.jenvman.2012.11.024}, pages = {S84 -- S95}, year = {2013}, abstract = {Eastern Mediterranean ecosystems are prone to desertification when under grazing pressure. Therefore, management of grazing intensity plays a crucial role to avoid or to diminish land degradation and to sustain both livelihoods and ecosystem functioning. The dynamic land-use model LandSHIFT was applied to a case study on the country level for Jordan. The impacts of different stocking densities on the environment were assessed through a set of simulation experiments for various combinations of climate input and assumptions about the development of livestock numbers. Indicators used for the analysis include a set of landscape metrics to account for habitat fragmentation and the "Human Appropriation of Net Primary Production" (HANPP), i.e., the difference between the amount of net primary production (NPP) that would be available in a natural ecosystem and the amount of NPP that remains under human management. Additionally, the potential of the economic valuation of ecosystem services, including landscape and grazing services, as an analysis concept was explored. We found that lower management intensities had a positive effect on HANPP but at the same time resulted in a strong increase of grazing area. This effect was even more pronounced under climate change due to a predominantly negative effect on the biomass productivity of grazing land. Also Landscape metrics tend to indicate decreasing habitat fragmentation as a consequence of lower grazing pressure. The valuation of ecosystem services revealed that low grazing intensity can lead to a comparatively higher economic value on the country level average. The results from our study underline the importance of considering grazing management as an important factor to manage dry-land ecosystems in a sustainable manner.}, language = {en} } @article{BergholzJeltschWeissetal.2015, author = {Bergholz, Kolja and Jeltsch, Florian and Weiß, Lina and Pottek, Janine and Geißler, Katja and Ristow, Michael}, title = {Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02193}, pages = {1547 -- 1554}, year = {2015}, abstract = {Fertilization causes species loss and species dominance changes in plant communities worldwide. However, it still remains unclear how fertilization acts upon species functional traits, e.g. seed mass. Seed mass is a key trait of the regeneration strategy of plants, which influences a range of processes during the seedling establishment phase. Fertilization may select upon seed mass, either directly by increased nutrient availability or indirectly by increased competition. Since previous research has mainly analyzed the indirect effects of fertilization, we disentangled the direct and indirect effects to examine how nutrient availability and competition influence the seed mass relationships on four key components during seedling establishment: seedling emergence, time of seedling emergence, seedling survival and seedling growth. We conducted a common garden experiment with 22 dry grassland species with a two-way full factorial design that simulated additional nutrient supply and increased competition. While we found no evidence that fertilization either directly by additional nutrient supply or indirectly by increased competition alters the relationship between seed mass and (time of) seedling emergence, we revealed that large seed mass is beneficial under nutrient-poor conditions (seedlings have greater chances of survival, particularly in nutrient-poor soils) as well as under competition (large-seeded species produced larger seedlings, which suffered less from competition than small-seeded species). Based on these findings, we argue that both factors, i.e. nutrient availability and competition intensity, ought to be considered to understand how fertilization influences seedling establishment and species composition with respect to seed mass in natural communities. We propose a simple conceptual model, in which seed mass in natural communities is determined by competition intensity and nutrient availability. Here, we hypothesize that seed mass shows a U-shaped pattern along gradients of soil fertility, which may explain the contrasting soil fertility-seed mass relationships found in the recent literature.}, language = {en} } @article{WeissSchalowJeltschetal.2019, author = {Weiss, Lina and Schalow, Linda and Jeltsch, Florian and Geissler, Katja}, title = {Experimental evidence for root competition effects on community evenness in one of two phytometer species}, series = {Journal of plant ecology}, volume = {12}, journal = {Journal of plant ecology}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rty021}, pages = {281 -- 291}, year = {2019}, abstract = {Aims Plant-plant interactions, being positive or negative, are recognized to be key factors in structuring plant communities. However, it is thought that root competition may be less important than shoot competition due to greater size symmetry belowground. Because direct experimental tests on the importance of root competition are scarce, we aim at elucidating whether root competition may have direct or indirect effects on community structure. Indirect effects may occur by altering the overall size asymmetry of competition through root-shoot competitive interactions. Methods We used a phytometer approach to examine the effects of root, shoot and total competition intensity and importance on evenness of experimental plant communities. Thereby two different phytometer species, Festuca brevipila and Dianthus carthusianorum, were grown in small communities of six grassland species over three levels of light and water availability, interacting with neighbouring shoots, roots, both or not at all. Important Findings We found variation in community evenness to be best explained if root and shoot (but not total) competition were considered. However, the effects were species specific: in Dianthus communities increasing root competition increased plant community evenness, while in Festuca communities shoot competition was the driving force of this evenness response. Competition intensities were influenced by environmental conditions in Dianthus, but not in Festuca phytometer plants. While we found no evidence for root-shoot interactions for neither phytometer species root competition in Dianthus communities led to increased allocation to shoots, thereby increasing the potential ability to perform in size-asymmetric competition for light. Our experiment demonstrates the potential role of root competition in structuring plant communities.}, language = {en} } @article{MuellervanSchaikBlumeetal.2014, author = {M{\"u}ller, Eva Nora and van Schaik, Loes and Blume, Theresa and Bronstert, Axel and Carus, Jana and Fleckenstein, Jan H. and Fohrer, Nicola and Geissler, Katja and Gerke, Horst H. and Gr{\"a}ff, Thomas and Hesse, Cornelia and Hildebrandt, Anke and H{\"o}lker, Franz and Hunke, Philip and K{\"o}rner, Katrin and Lewandowski, J{\"o}rg and Lohmann, Dirk and Meinikmann, Karin and Schibalski, Anett and Schmalz, Britta and Schr{\"o}der-Esselbach, Boris and Tietjen, Britta}, title = {Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {58}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2014,4_2}, pages = {221 -- 240}, year = {2014}, abstract = {Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change.}, language = {de} } @misc{GeisslerHeblackUuguluetal.2019, author = {Geißler, Katja and Heblack, Jessica and Uugulu, Shoopala and Wanke, Heike and Blaum, Niels}, title = {Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {798}, issn = {1866-8372}, doi = {10.25932/publishup-44111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441110}, pages = {13}, year = {2019}, abstract = {Introduction: Many semiarid regions around the world are presently experiencing significant changes in both climatic conditions and vegetation. This includes a disturbed coexistence between grasses and bushes also known as bush encroachment, and altered precipitation patterns with larger rain events. Fewer, more intense precipitation events might promote groundwater recharge, but depending on the structure of the vegetation also encourage further woody encroachment. Materials and Methods: In this study, we investigated how patterns and sources of water uptake of Acacia mellifera (blackthorn), an important encroaching woody plant in southern African savannas, are associated with the intensity of rain events and the size of individual shrubs. The study was conducted at a commercial cattle farm in the semiarid Kalahari in Namibia (MAP 250 mm/a). We used soil moisture dynamics in different depths and natural stable isotopes as markers of water sources. Xylem water of fifteen differently sized individuals during eight rain events was extracted using a Scholander pressure bomb. Results and Discussion: Results suggest the main rooting activity zone of A. mellifera in 50 and 75 cm soil depth but a reasonable water uptake from 10 and 25 cm. Any apparent uptake pattern seems to be driven by water availability, not time in the season. Bushes prefer the deeper soil layers after heavier rain events, indicating some evidence for the classical Walter's two-layer hypothesis. However, rain events up to a threshold of 6 mm/day cause shallower depths of use and suggest several phases of intense competition with perennial grasses. The temporal uptake pattern does not depend on shrub size, suggesting a fast upwards water flow inside. d2H and d18O values in xylem water indicate that larger shrubs rely less on upper and very deep soil water than smaller shrubs. It supports the hypothesis that in environments where soil moisture is highly variable in the upper soil layers, the early investment in a deep tap-root to exploit deeper, more reliable water sources could reduce the probability of mortality during the establishment phase. Nevertheless, independent of size and time in the season, bushes do not compete with potential groundwater recharge. In a savanna encroached by A. mellifera, groundwater will most likely be affected indirectly.}, language = {en} } @article{GeisslerHeblackUuguluetal.2019, author = {Geißler, Katja and Heblack, Jessica and Uugulu, Shoopala and Wanke, Heike and Blaum, Niels}, title = {Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01411}, pages = {13}, year = {2019}, abstract = {Introduction: Many semiarid regions around the world are presently experiencing significant changes in both climatic conditions and vegetation. This includes a disturbed coexistence between grasses and bushes also known as bush encroachment, and altered precipitation patterns with larger rain events. Fewer, more intense precipitation events might promote groundwater recharge, but depending on the structure of the vegetation also encourage further woody encroachment. Materials and Methods: In this study, we investigated how patterns and sources of water uptake of Acacia mellifera (blackthorn), an important encroaching woody plant in southern African savannas, are associated with the intensity of rain events and the size of individual shrubs. The study was conducted at a commercial cattle farm in the semiarid Kalahari in Namibia (MAP 250 mm/a). We used soil moisture dynamics in different depths and natural stable isotopes as markers of water sources. Xylem water of fifteen differently sized individuals during eight rain events was extracted using a Scholander pressure bomb. Results and Discussion: Results suggest the main rooting activity zone of A. mellifera in 50 and 75 cm soil depth but a reasonable water uptake from 10 and 25 cm. Any apparent uptake pattern seems to be driven by water availability, not time in the season. Bushes prefer the deeper soil layers after heavier rain events, indicating some evidence for the classical Walter's two-layer hypothesis. However, rain events up to a threshold of 6 mm/day cause shallower depths of use and suggest several phases of intense competition with perennial grasses. The temporal uptake pattern does not depend on shrub size, suggesting a fast upwards water flow inside. d2H and d18O values in xylem water indicate that larger shrubs rely less on upper and very deep soil water than smaller shrubs. It supports the hypothesis that in environments where soil moisture is highly variable in the upper soil layers, the early investment in a deep tap-root to exploit deeper, more reliable water sources could reduce the probability of mortality during the establishment phase. Nevertheless, independent of size and time in the season, bushes do not compete with potential groundwater recharge. In a savanna encroached by A. mellifera, groundwater will most likely be affected indirectly.}, language = {en} }