@article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Arlen, T. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and B{\"o}ttcher, Markus and Bouvier, A. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Cesarini, A. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and H{\"u}tten, M. and Hakansson, Nils and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rousselle, J. and Rovero, A. C. and Saxon, D. B. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Todd, N. W. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Baring, M. G. and Gonzalez, J. Becerra and Cillis, A. N. and Horan, D. and Paneque, D.}, title = {Very high energy outburst of Markarian 501 in May 2009}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {594}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {Veritas Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628744}, pages = {12}, year = {2016}, abstract = {The very high energy (VHE; E > 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multiwavelength campaign from radio to VHE. Strong VHE yray activity was detected on May 1st with Whipple and VERITAS, when the flux (E > 400 GeV) increased to 10 times the preflare baseline flux (3.9 x 10(-11) ph cm(-2) s(-1)), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15. This VHE flare showed a fast flux variation with an increase of a factor similar to 4 in 25 min, and a falling time of similar to 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.}, language = {en} } @article{ArlenAuneBeilickeetal.2012, author = {Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Pfrommer, C. and Pinzke, A.}, title = {Constraints on cosmic rays, magnetic fields, and dark matter fromgamma-ray observations of the coma cluster of galaxies with veritas and fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {757}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/757/2/123}, pages = {14}, year = {2012}, abstract = {Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99\% confidence level were measured to be on the order of (2-5) x 10(-8) photonsm(-2) s(-1) (VERITAS, >220 GeV) and similar to 2 x 10(-6) photonsm(-2) s(-1) (Fermi, 1-3GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be < 16\% from VERITAS data and <1.7\% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50\%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of similar to(2-5.5) mu G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, .}, language = {en} } @article{AliuArlenAuneetal.2011, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gibbs, K. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Nunez, P. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pizlo, F. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {Detection of pulsed Gamma Rays Above 100 GeV from the Crab Pulsar}, series = {Science}, volume = {334}, journal = {Science}, number = {6052}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {VERITAS Collaboration}, issn = {0036-8075}, doi = {10.1126/science.1208192}, pages = {69 -- 72}, year = {2011}, abstract = {We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Kaaret, P. and Karlsson, N. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D. and Fumagalli, M. and Kaplan, K. and Prochaska, J. X.}, title = {Veritas observations of six bright, hard-spectrum fermi-lat blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {759}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/759/2/102}, pages = {13}, year = {2012}, abstract = {We report on VERITAS very high energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate-and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Decerprit, G. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Feng, Q. and Ferrer, F. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wagner, R. G. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {VERITAS deep observations of the dwarf spheroidal galaxy Segue 1}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {85}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {1550-7998}, doi = {10.1103/PhysRevD.85.062001}, pages = {12}, year = {2012}, abstract = {The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant gamma-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are (95\%) (CL) less than or similar to 10(-23) cm(3) s(-1), improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses m(chi) greater than or similar to 300 GeV. The lower limits on the decay lifetime are at the level of tau(95\%) (CL) greater than or similar to 10(24) s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.}, language = {en} } @article{ArcherBenbowBirdetal.2016, author = {Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Huetten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Yusef-Zadeh, F.}, title = {TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/129}, pages = {162 -- 167}, year = {2016}, abstract = {The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S.. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and. (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.}, language = {en} } @article{AllenArchambaultArcheretal.2017, author = {Allen, C. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Eisch, J. D. and Falcone, Abe and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilhelm, Alina and Williams, D. A.}, title = {Very-High-Energy gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1756}, pages = {2117 -- 2123}, year = {2017}, abstract = {We present very-high-energy gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above the background of 20.8 sigma in 47.2 h (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations, the temporal properties of 1ES 2344+514 are studied on short and long times-scales. We fit a constant-flux model to nightly and seasonally binned light curves and apply a fractional variability test to determine the stability of the source on different time-scales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly binned light curves and for the long-term seasonally binned light curve at the > 3 sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (x(2)/NDF = 7.89/6) by a power-law function with an index Gamma = 2.46 +/- 0.06(stat) +/- 0.20(sys) and extends to at least 8 TeV. The extragalactic-backgroundlight-deabsorbed spectrum is adequately fit (x(2)/NDF = 6.73/6) by a power-law function with an index Gamma = 2.15 +/- 0.06(stat) +/- 0.20(sys) while an F-test indicates that the power law with an exponential cut-off function provides a marginally better fit (x(2)/NDF = 2.56/5) at the 2.1 sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.}, language = {en} } @article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Gotthelf, E. V. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kargaltsev, O. and Karlsson, N. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O\&rsquo and Faolain, and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Roberts, M. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Slane, P. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS}, series = {ASTROPHYSICAL JOURNAL}, volume = {764}, journal = {ASTROPHYSICAL JOURNAL}, number = {1}, publisher = {IOP PUBLISHING LTD}, address = {BRISTOL}, issn = {0004-637X}, doi = {10.1088/0004-637X/764/1/38}, pages = {9}, year = {2013}, abstract = {We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.degrees 30 (0.degrees 24) and a centroid 5\’ from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N-0(E/3 TeV)(-Gamma), with a differential spectral index of Gamma = 2.2 +/- 0.2(stat) +/- 0.3(sys), and normalization N-0 = (9.1 +/- 1.3(stat) +/- 1.7(sys)) x 10(-14) cm(-2) s(-1) TeV-1. The integral flux, F-gamma = 4.0 x 10(-12) erg cm(-2) s(-1) above 1 TeV, corresponds to 0.2\% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.}, language = {en} } @article{OrientiFinkeRaiterietal.2015, author = {Orienti, M. and Finke, J. and Raiteri, C. M. and Hovatta, T. and Larsson, J. and Max-Moerbeck, W. and Perkins, J. and Readhead, A. C. S. and Richards, J. L. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gerard, L. and Gillanders, G. H. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {The most powerful flaring activity from the NLSyl PMN J0948+0022}, series = {Monthly notices of the Royal Astronomical Society}, volume = {446}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {VERITAS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu2251}, pages = {2456 -- 2467}, year = {2015}, abstract = {We report on multifrequency observations performed during 2012 December-2013 August of the first narrow-line Seyfert 1 galaxy detected in gamma-rays, PMN J0948+0022 (z = 0.5846). A y -ray flare was observed by the Large Area Telescope on board Fermi during 2012 December-2013 January, reaching a daily peak flux in the 0.1-100 GeV energy range of (155 31) x 10 8 ph cm(-2) S-1 on 2013 January 1, corresponding to an apparent isotropic luminosity of similar to 1.5 x 1048 erg s(-1). The y -ray flaring period triggered Swift and Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations in addition to radio and optical monitoring by Owens Valley Radio Observatory, Monitoring Of Jets in Active galactic nuclei with VLBA Experiments, and Catalina Real-time Transient Survey. A strong flare was observed in optical, UV, and X-rays on 2012 December 30, quasi-simultaneously to the y -ray flare, reaching a record flux for this source from optical to y gamma-rays. VERITAS observations at very high energy (E > 100 GeV) during 2013 January 6-17 resulted in an upper limit of F>0.2 Trev < 4.0 x 10(-12) ph cm(-2) s(-1). We compared the spectral energy distribution (SED) of the flaring state in 2013 January with that of an intermediate state observed in 2011. The two SEDs, modelled as synchrotron emission and an external Compton scattering of seed photons from a dust torus, can be modelled by changing both the electron distribution parameters and the magnetic field.}, language = {en} }