@misc{WippertRectorKuhnetal.2017, author = {Wippert, Pia-Maria and Rector, Michael V. and Kuhn, Gisela and Wuertz-Kozak, Karin}, title = {Stress and Alterations in Bones}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395866}, pages = {7}, year = {2017}, abstract = {Decades of research have demonstrated that physical stress (PS) stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS) also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic-pituitary-adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone) and proposing new research directions.}, language = {en} } @article{WippertRectorKuhnetal.2017, author = {Wippert, Pia-Maria and Rector, Michael V. and Kuhn, Gisela and Wuertz-Kozak, Karin}, title = {Stress and Alterations in Bones}, series = {Frontiers in endocrinology}, volume = {8}, journal = {Frontiers in endocrinology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-2392}, doi = {10.3389/fendo.2017.00096}, pages = {7}, year = {2017}, abstract = {Decades of research have demonstrated that physical stress (PS) stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS) also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic-pituitary-adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone) and proposing new research directions.}, language = {en} } @article{MaLiKempkaetal.2019, author = {Ma, Jianli and Li, Qi and Kempka, Thomas and K{\"u}hn, Michael}, title = {Hydromechanical response and impact of gas mixing behavior in subsurface CH4 storage with CO2-based cushion gas}, series = {Energy \& fuels}, volume = {33}, journal = {Energy \& fuels}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0887-0624}, doi = {10.1021/acs.energyfuels.9b00518}, pages = {6527 -- 6541}, year = {2019}, abstract = {Power-to-gas (PtG) stores chemical energy by converting excess electrical energy from renewable sources into an energy-dense gas. Due to its higher available capacity compared to surface-based storage technologies, subsurface storage in geological systems is the most promising approach for efficient and economic realization of the PtG system's storage component. For this purpose, methane (CH4) produced by methanation by means of hydrogen (H2) and carbon dioxide (CO2) is stored in a geological reservoir until required for further use. In this context, CO2 is used as the cushion gas to maintain reservoir pressure and limiting working gas, i.e., (CH4) losses during withdrawal periods. Consequently, mixing of both gases in the reservoir is inevitable. Therefore, it is necessary to minimize the gas mixing region to optimize the efficiency of the PtG system's storage component. In the present study, the physical properties of CH4, CO2 and their mixtures are reviewed. Then, a multicomponent flow model is implemented and validated against published data. Next, a hydromechanically coupled model is established, considering fluid flow through porous media and effective stresses to investigate the mixing behavior of both gases and the mechanical reservoir stability. The simulation results show that, with increasing reservoir thickness and dip angle, the mixing region is reduced during gas injection if CO2 is employed as the cushion gas. In addition, the degree of mixing is lower at higher temperatures. Feasible injection rates and injection schedules can be derived from the integrated reservoir stability analysis. The methodology developed in the present study allows the determination of optimum strategies for storage reservoir selection and gas injection scheduling by minimizing the gas mixing region.}, language = {en} } @misc{WetzelKempkaKuehn2017, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Predicting macroscopic elastic rock properties requires detailed information on microstructure}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.195}, pages = {561 -- 570}, year = {2017}, abstract = {Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 \% for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young's moduli is significantly improved, when detailed spatial information are employed.}, language = {en} } @misc{KuehnSchoene2017, author = {K{\"u}hn, Michael and Sch{\"o}ne, Tim}, title = {Multivariate regression model from water level and production rate time series for the geothermal reservoir Waiwera (New Zealand)}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.196}, pages = {571 -- 579}, year = {2017}, abstract = {Water management tools are necessary to guarantee the preservation of natural resources while ensuring optimum utilization. Linear regression models are a simple and quick solution for creating prognostic capabilities. Multivariate models show higher precision than univariate models. In the case of Waiwera, implementation of individual production rates is more accurate than applying just the total production rate. A maximum of approximately 1,075 m3/day can be pumped to ensure a water level of at least 0.5 m a.s.l. in the monitoring well. The model should be renewed annually to implement new data and current water level trends to keep the quality.}, language = {en} } @misc{KuehnLiNakatenetal.2017, author = {K{\"u}hn, Michael and Li, Qi and Nakaten, Natalie Christine and Kempka, Thomas}, title = {Integrated subsurface gas storage of CO2 and CH4 offers capacity and state-of-the-art technology for energy storage in China}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.039}, pages = {14 -- 18}, year = {2017}, abstract = {Integration and development of the energy supply in China and worldwide is a challenge for the years to come. The innovative idea presented here is based on an extension of the "power-to-gas-to-power" technology by establishing a closed carbon cycle. It is an implementation of a low-carbon energy system based on carbon dioxide capture and storage (CCS) to store and reuse wind and solar energy. The Chenjiacun storage project in China compares well with the German case study for the towns Potsdam and Brandenburg/Havel in the Federal State of Brandenburg based on the Ketzin pilot site for CCS.}, language = {en} } @article{KuehnBrenningWehrhanetal.2009, author = {K{\"u}hn, J{\"u}rgen and Brenning, Alexander and Wehrhan, Marc and Koszinski, Sylvia and Sommer, Michael}, title = {Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture}, issn = {1385-2256}, doi = {10.1007/s11119-008-9103-z}, year = {2009}, abstract = {Precision farming needs management rules to apply spatially differentiated treatments in agricultural fields. Digital soil mapping (DSM) tools, for example apparent soil electrical conductivity, corrected to 25A degrees C (EC25), and digital elevation models, try to explain the spatial variation in soil type, soil properties (e.g. clay content), site and crop that are determined by landscape characteristics such as terrain, geology and geomorphology. We examined the use of EC25 maps to delineate management zones, and identified the main factors affecting the spatial pattern of EC25 at the regional scale in a study area in eastern Germany. Data of different types were compared: EC25 maps for 11 fields, soil properties measured in the laboratory, terrain attributes, geological maps and the description of 75 soil profiles. We identified the factors that influence EC25 in the presence of spatial autocorrelation and field-specific random effects with spatial linear mixed-effects models. The variation in EC25 could be explained to a large degree (R (2) of up to 61\%). Primarily, soil organic matter and CaCO3, and secondarily clay and the presence of gleyic horizons were significantly related to EC25. Terrain attributes, however, had no significant effect on EC25. The geological map unit showed a significant relationship to EC25, and it was possible to determine the most important soil properties affecting EC25 by interpreting the geological maps. Including information on geology in precision agriculture could improve understanding of EC25 maps. The EC25 maps of fields should not be assumed to represent a map of clay content to form a basis for deriving management zones because other factors appeared to have a more important effect on EC25.}, language = {en} } @book{Kuehn2013, author = {K{\"u}hn, Michael}, title = {Beitr{\"a}ge der Georessource Untergrund zur Energiewende : Antrittsvorlesung 2013-06-12}, publisher = {Univ.-Bibl.}, address = {Potsdam}, year = {2013}, abstract = {Die Ziele der Energiewende sind ehrgeizig. Der Vortrag zeigt, welche Nutzungsoptionen der Untergrund bietet - z.B. geothermische Energiegewinnung oder geologische Speicherung. F{\"u}r eine gesellschaftsweite, sachliche Diskussion werden konkrete Zahlen nicht nur zu den Chancen, sondern auch zu den Risiken ben{\"o}tigt.}, language = {de} } @misc{TillnerLangerKempkaetal.2016, author = {Tillner, Elena and Langer, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Fault damage zone volume and initial salinity distribution determine intensity of shallow aquifer salinisation in subsurface storage}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {548}, issn = {1866-8372}, doi = {10.25932/publishup-41185}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411854}, pages = {19}, year = {2016}, abstract = {Injection of fluids into deep saline aquifers causes a pore pressure increase in the storage formation, and thus displacement of resident brine. Via hydraulically conductive faults, brine may migrate upwards into shallower aquifers and lead to unwanted salinisation of potable groundwater resources. In the present study, we investigated different scenarios for a potential storage site in the Northeast German Basin using a three-dimensional (3-D) regional-scale model that includes four major fault zones. The focus was on assessing the impact of fault length and the effect of a secondary reservoir above the storage formation, as well as model boundary conditions and initial salinity distribution on the potential salinisation of shallow groundwater resources. We employed numerical simulations of brine injection as a representative fluid. Our simulation results demonstrate that the lateral model boundary settings and the effective fault damage zone volume have the greatest influence on pressure build-up and development within the reservoir, and thus intensity and duration of fluid flow through the faults. Higher vertical pressure gradients for short fault segments or a small effective fault damage zone volume result in the highest salinisation potential due to a larger vertical fault height affected by fluid displacement. Consequently, it has a strong impact on the degree of shallow aquifer salinisation, whether a gradient in salinity exists or the saltwater-freshwater interface lies below the fluid displacement depth in the faults. A small effective fault damage zone volume or low fault permeability further extend the duration of fluid flow, which can persist for several tens to hundreds of years, if the reservoir is laterally confined. Laterally open reservoir boundaries, large effective fault damage zone volumes and intermediate reservoirs significantly reduce vertical brine migration and the potential of freshwater salinisation because the origin depth of displaced brine is located only a few decametres below the shallow aquifer in maximum. The present study demonstrates that the existence of hydraulically conductive faults is not necessarily an exclusion criterion for potential injection sites, because salinisation of shallower aquifers strongly depends on initial salinity distribution, location of hydraulically conductive faults and their effective damage zone volumes as well as geological boundary conditions.}, language = {en} } @article{WetzelKempkaKuehn2020, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Hydraulic and mechanical impacts of pore space alterations within a sandstone quantified by a flow velocity-dependent precipitation approach}, series = {Materials}, volume = {13}, journal = {Materials}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13143100}, pages = {20}, year = {2020}, abstract = {Geochemical processes change the microstructure of rocks and thereby affect their physical behaviour at the macro scale. A micro-computer tomography (micro-CT) scan of a typical reservoir sandstone is used to numerically examine the impact of three spatial alteration patterns on pore morphology, permeability and elastic moduli by correlating precipitation with the local flow velocity magnitude. The results demonstrate that the location of mineral growth strongly affects the permeability decrease with variations by up to four orders in magnitude. Precipitation in regions of high flow velocities is characterised by a predominant clogging of pore throats and a drastic permeability reduction, which can be roughly described by the power law relation with an exponent of 20. A continuous alteration of the pore structure by uniform mineral growth reduces the permeability comparable to the power law with an exponent of four or the Kozeny-Carman relation. Preferential precipitation in regions of low flow velocities predominantly affects smaller throats and pores with a minor impact on the flow regime, where the permeability decrease is considerably below that calculated by the power law with an exponent of two. Despite their complete distinctive impact on hydraulics, the spatial precipitation patterns only slightly affect the increase in elastic rock properties with differences by up to 6.3\% between the investigated scenarios. Hence, an adequate characterisation of the spatial precipitation pattern is crucial to quantify changes in hydraulic rock properties, whereas the present study shows that its impact on elastic rock parameters is limited. The calculated relations between porosity and permeability, as well as elastic moduli can be applied for upscaling micro-scale findings to reservoir-scale models to improve their predictive capabilities, what is of paramount importance for a sustainable utilisation of the geological subsurface.}, language = {en} }