@article{LieckfeldtSimonRosinZoelleretal.2004, author = {Lieckfeldt, Elke and Simon-Rosin, Ulrike and Z{\"o}ller, Daniela and Ebert, Berit and Kehr, Julia and Fisahn, Joachim}, title = {Spatio/temporal analysis of gene exression profiles within single cells and specific tissue types of developing Arabidopsis plants}, isbn = {3-00-011587-0}, year = {2004}, language = {en} } @article{ZollerBethBinosietal.2005, author = {Zoller, Peter and Beth, Thomas and Binosi, D. and Blatt, Rainer and Briegel, Hans J. and Bruss, D. and Calarco, Tommaso and Cirac, Juan Ignacio and Deutsch, David and Eisert, Jens and Ekert, Artur and Fabre, Claude and Gisin, Nicolas and Grangiere, P. and Grassl, Markus and Haroche, Serge and Imamoglu, Atac and Karlson, A. and Kempe, Julia and Kouwenhoven, Leo P. and Kr{\"o}ll, S. and Leuchs, Gerd and Lewenstein, Maciej and Loss, Daniel and L{\"u}tkenhaus, Norbert and Massar, Serge and Mooij, J. E. and Plenio, Martin Bodo and Polzik, Eugene and Popescu, Sandu and Rempe, Gerhard and Sergienko, Alexander and Suter, David and Twamley, John and Wendin, G{\"o}ran and Werner, Reinhard F. and Winter, Andreas and Wrachtrup, J{\"o}rg and Zeilinger, Anton}, title = {Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe}, issn = {1434-6060}, year = {2005}, abstract = {We present an excerpt of the document "Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe", which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the Directorate General Information Society of the European Commission, http://www.cordis.lu/ist/fet/qipc-sr.htm). This document has been elaborated, following a former suggestion by FET, by a committee of QIPC scientists to provide input towards the European Commission for the preparation of the Seventh Framework Program. Besides being a document addressed to policy makers and funding agencies (both at the European and national level), the document contains a detailed scientific assessment of the state-of-the-art, main research goals, challenges, strengths, weaknesses, visions and perspectives of all the most relevant QIPC sub-fields, that we report here}, language = {en} } @article{MeinersPalmieriKlopfleischetal.2019, author = {Meiners, Jana and Palmieri, Vittoria and Klopfleisch, Robert and Ebel, Jana-Fabienne and Japtok, Lukasz and Schumacher, Fabian and Yusuf, Ayan Mohamud and Becker, Katrin Anne and Z{\"o}ller, Julia and Hose, Matthias and Kleuser, Burkhard and Hermann, Dirk Matthias and Kolesnick, Richard N. and Buer, Jan and Hansen, Wiebke and Westendorf, Astrid M.}, title = {Intestinal acid sphingomyelinase protects from severe Pathogen-Driven Colitis}, series = {Frontiers in immunology}, volume = {10}, journal = {Frontiers in immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.01386}, pages = {14}, year = {2019}, abstract = {Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory T(h)1 and T(h)17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium.}, language = {en} }