@article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{MantzoukiLurlingFastneretal.2018, author = {Mantzouki, Evanthia and Lurling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wozniak, Elzbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krzton, Wojciech and Walusiak, Edward and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Cillero-Castro, Carmen and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Karakaya, Nusret and Haggqvist, Kerstin and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Ozhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, Ozden and Avagianos, Christos and Kaloudis, Triantafyllos and Celik, Kemal and Yilmaz, Mete and Marce, Rafael and Catalan, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Goncalves, Vitor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, Tunay and Soylu, Elif Neyran and Maraslioglu, Faruk and Napiorkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Antao-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Kocer, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tugba Ongun and Tunca, Hatice and OEnem, Burcin and Aleksovski, Boris and Krstic, Svetislav and Vucelic, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Delgado-Martin, Jordi and Garcia, David and Cereijo, Jose Luis and Goma, Joan and Trapote, Mari Carmen and Vegas-Vilarrubia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Ubeda, Barbara and Angel Galvez, Jose and Ozen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Arvola, Lauri and Alcaraz-Parraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Leira, Manel and Hernandez, Armand and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Miguel Soria, Juan and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ozkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Toxins}, volume = {10}, journal = {Toxins}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins10040156}, pages = {24}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @misc{MantzoukiLuerlingFastneretal.2018, author = {Mantzouki, Evanthia and L{\"u}rling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wo{\'{z}}niak, Elżbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krztoń, Wojciech and Walusiak, Edward and Karosienė, Jūratė and Kasperovičienė, Jūratė and Savadova, Ksenija and Vitonytė, Irma and Cillero-Castro, Carmen and Budzyńska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosińska, Joanna and Szeląg-Wasielewska, Elżbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pełechata, Aleksandra and Pełechaty, Mariusz and Kokocinski, Mikolaj and Garc{\´i}a-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Duque, David Parre{\~n}o and Fern{\´a}ndez-Mor{\´a}n, El{\´i}sabeth and Karakaya, Nusret and H{\"a}ggqvist, Kerstin and Beklioğlu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Uğur and Bezirci, Gizem and Tav{\c{s}}anoğlu, {\"U}lk{\"u} Nihan and {\"O}zhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, {\"O}zden and Avagianos, Christos and Kaloudis, Triantafyllos and {\c{C}}elik, Kemal and Yilmaz, Mete and Marc{\´e}, Rafael and Catal{\´a}n, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Gon{\c{c}}alves, V{\´i}tor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, T{\~o}nu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yağc{\i}, Meral Apayd{\i}n and {\c{C}}{\i}nar, Şakir and {\c{C}}apk{\i}n, Kadir and Yağc{\i}, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, T{\"u}nay and Soylu, Elif Neyran and Mara{\c{s}}l{\i}oğlu, Faruk and Napi{\´o}rkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Ant{\~a}o-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Jo{\~a}o and Vale, Micaela and K{\"o}ker, Latife and Ak{\c{c}}aalan, Reyhan and Albay, Meri{\c{c}} and Maronić, Dubravka Špoljarić and Stević, Filip and Pfeiffer, Tanja Žuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Bl{\´a}ha, Luděk and Geriš, Rodan and Fr{\´a}nkov{\´a}, Mark{\´e}ta and Ko{\c{c}}er, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tuğba Ongun and Tunca, Hatice and {\"O}nem, Bur{\c{c}}in and Aleksovski, Boris and Krstić, Svetislav and Vucelić, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and Oliveira, Alinne Gurj{\~a}o De and Delgado-Mart{\´i}n, Jordi and Garc{\´i}a, David and Cereijo, Jose Lu{\´i}s and Gom{\`a}, Joan and Trapote, Mari Carmen and Vegas-Vilarr{\´u}bia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and {\´U}beda, B{\´a}rbara and G{\´a}lvez, Jos{\´e} {\´A}ngel and {\"O}zen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and P{\´e}rez-Mart{\´i}nez, Carmen and Ramos-Rodr{\´i}guez, Elo{\´i}sa and Arvola, Lauri and Alcaraz-P{\´a}rraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Nied{\'{z}}wiecki, Michał and Pęczuła, Wojciech and Leira, Manel and Hern{\´a}ndez, Armand and Moreno-Ostos, Enrique and Blanco, Jos{\´e} Mar{\´i}a and Rodr{\´i}guez, Valeriano and Montes-P{\´e}rez, Jorge Juan and Palomino, Roberto L. and Rodr{\´i}guez-P{\´e}rez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Dunalska, Julita and Sieńska, Justyna and Szymański, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Žutinić, Petar and Udovič, Marija Gligora and Plenković-Moraj, Anđelka and Frąk, Magdalena and Bańkowska-Sobczak, Agnieszka and Wasilewicz, Michał and {\"O}zkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1105}, issn = {1866-8372}, doi = {10.25932/publishup-42790}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427902}, pages = {26}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @article{MantzoukiCampbellvanLoonetal.2018, author = {Mantzouki, Evanthia and Campbell, James and van Loon, Emiel and Visser, Petra and Konstantinou, Iosif and Antoniou, Maria and Giuliani, Gregory and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Vucelic, Itana Bokan and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Tsiarta, Nikoletta and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Kangro, Kersti and Haggqvist, Kerstin and Salmi, Pauliina and Arvola, Lauri and Fastner, Jutta and Straile, Dietmar and Rothhaupt, Karl-Otto and Fonvielle, Jeremy Andre and Grossart, Hans-Peter and Avagianos, Christos and Kaloudis, Triantafyllos and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Gkelis, Spyros and Panou, Manthos and McCarthy, Valerie and Perello, Victor C. and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Koreiviene, Judita and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Haande, Sigrid and Skjelbred, Birger and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Nawrocka, Lidia and Kobos, Justyna and Mazur-Marzec, Hanna and Alcaraz-Parraga, Pablo and Wilk-Wozniak, Elzbieta and Krzton, Wojciech and Walusiak, Edward and Gagala, Ilona and Mankiewicz-Boczek, Joana and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Napiorkowska-Krzebietke, Agnieszka and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Madrecka, Beata and Kostrzewska-Szlakowska, Iwona and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Jasser, Iwona and Antao-Geraldes, Ana M. and Leira, Manel and Hernandez, Armand and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Raposeiro, Pedro M. and Goncalves, Vitor and Aleksovski, Boris and Krstic, Svetislav and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Remec-Rekar, Spela and Elersek, Tina and Delgado-Martin, Jordi and Garcia, David and Luis Cereijo, Jose and Goma, Joan and Carmen Trapote, Mari and Vegas-Vilarrubia, Teresa and Obrador, Biel and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Ubeda, Barbara and Angel Galvez, Jose and Marce, Rafael and Catalan, Nuria and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Cillero-Castro, Carmen and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Ozen, Arda and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Verspagen, Jolanda M. H. and Domis, Lisette N. de Senerpont and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Lurling, Miquel and Maliaka, Valentini and Faassen, Elisabeth J. and Latour, Delphine and Carey, Cayelan C. and Paerl, Hans W. and Torokne, Andrea and Karan, Tunay and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Celik, Kemal and Ozhan, Koray and Karakaya, Nusret and Kocer, Mehmet Ali Turan and Yilmaz, Mete and Maraslioglu, Faruk and Fakioglu, Ozden and Soylu, Elif Neyran and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Alp, Mehmet Tahir and Ozkan, Korhan and Sevindik, Tugba Ongun and Tunca, Hatice and Onem, Burcin and Richardson, Jessica and Edwards, Christine and Bergkemper, Victoria and Beirne, Eilish and Cromie, Hannah and Ibelings, Bastiaan W.}, title = {Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins}, series = {Scientific Data}, volume = {5}, journal = {Scientific Data}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/sdata.2018.226}, pages = {13}, year = {2018}, abstract = {Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.}, language = {en} } @book{RodriguezQuilesyGarciadeVugtOebelsbergeretal.2017, author = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A. and de Vugt, Adri and Oebelsberger, Monika and Medňansk{\´a}, Irena and Dymon, Mirosław and Jank, Birgit and Garc{\´i}a, Jos{\´e} M. and Garc{\´i}a, Mar{\´i}a S. and Ar{\´u}s, Eug{\`e}nia and Vicente, Manuel R. and D{\´i}az, Ana and Gonz{\´a}lez, Germ{\´a}n and Guti{\´e}rrez, Carmen J. and del Fresno, Beatriz Mart{\´i}nez and Garc{\´i}a-Fl{\´o}rez, Llori{\´a}n and Quijano, Luc{\´i}a and Ca{\~n}as, Manuel}, title = {Internationale Perspektiven zur Musik(lehrer)ausbildung in Europa}, editor = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A.}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-378-7}, issn = {2196-5080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100717}, publisher = {Universit{\"a}t Potsdam}, pages = {292}, year = {2017}, abstract = {Das Bildungsgesetz der spanischen Regierung aus dem Jahre 2013 (sp. LOMCE) gilt als Todesstoß f{\"u}r k{\"u}nstlerische F{\"a}cher an allgemein bildenden Schulen: Erst 1990 als Pflichtfach eingef{\"u}hrt, wird Musik nun nur noch als Wahlfach angeboten. Auch die Musiklehrerausbildung an den Hochschulen verzeichnet massive Einbußen. Besonders irritierend daran ist, dass die betroffenen Universit{\"a}tsgremien zu dieser politischen Entscheidung nicht geh{\"o}rt wurden. Damit verschwindet in Spanien das Studienfach Lehramt Musik je nach Universit{\"a}t nach nicht einmal 18 bis 20 Jahren aus dem Studienangebot.}, language = {de} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2018, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Arcaro, C. and Babic, A. and Banerjee, B. and Bangale, P. and Barres de Almeida, U. and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Bhattacharyya, W. and Blanch, O. and Bonnoli, G. and Carosi, R. and Carosi, A. and Chatterjee, A. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Cumani, P. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, Jose Miguel Martins and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Doro, M. and Glawion, D. Eisenacher and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hassan, T. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Ishio, K. and Konno, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Maggio, C. and Majumdar, P. and Makariev, M. and Maneva, G. and Manganaro, M. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moreno, V. and Moretti, E. and Nagayoshi, T. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nigro, C. and Nilsson, K. and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Paiano, S. and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Reichardt, I. and Ribo, M. and Rico, J. and Righi, C. and Rugliancich, A. and Saito, T. and Satalecka, K. and Schroeder, S. and Schweizer, T. and Shore, S. N. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Treves, A. and Tsujimoto, S. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Ward, J. E. and Will, M. and Zaric, D. and Arbet-Engels, A. and Baack, D. and Balbo, M. and Biland, A. and Blank, M. and Bretz, T. and Bruegge, K. and Bulinski, M. and Buss, J. and Dmytriiev, A. and Dorner, D. and Einecke, S. and Elsaesser, D. and Herbst, T. and Hildebrand, D. and Kortmann, L. and Linhoff, L. and Mahlke, M. and Mannheim, K. and Mueller, S. A. and Neise, D. and Neronov, A. and Noethe, M. and Oberkirch, J. and Paravac, A. and Rhode, W. and Schleicher, B. and Schulz, F. and Sedlaczek, K. and Shukla, A. and Sliusar, V. and Walter, R. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buckley, J. H. and Bugaev, V. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Gillanders, G. H. and Gueta, O. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Huetten, M. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhel, A. and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Perri, M. and Verrecchia, F. and Leto, C. and Villata, M. and Raiteri, C. M. and Jorstad, S. G. and Larionov, V. M. and Blinov, D. A. and Grishina, T. S. and Kopatskaya, E. N. and Larionova, E. G. and Nikiforova, A. A. and Morozova, D. A. and Troitskaya, Yu. V. and Troitsky, I. S. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kurtanidze, S. O. and Kimeridze, G. N. and Chigladze, R. A. and Strigachev, A. and Sadun, A. C.}, title = {Extreme HBL behavior of Markarian 501 during 2012}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {620}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration FACT Collaboration VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833704}, pages = {23}, year = {2018}, abstract = {Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of similar to 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was similar to 3 CU, and the peak of the high-energy spectral component was found to be at similar to 2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices <2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance <3 sigma) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.}, language = {en} } @article{DeAngelisTatischeffGrenieretal.2018, author = {De Angelis, A. and Tatischeff, V. and Grenier, I. A. and McEnery, J. and Mallamaci, Manuela and Tavani, M. and Oberlack, U. and Hanlon, L. and Walter, R. and Argan, A. and Von Ballmoos, P. and Bulgarelli, A. and Bykov, A. and Hernanz, M. and Kanbach, G. and Kuvvetli, I. and Pearce, M. and Zdziarski, A. and Conrad, J. and Ghisellini, G. and Harding, A. and Isern, J. and Leising, M. and Longo, F. and Madejski, G. and Martinez, M. and Mazziotta, Mario Nicola and Paredes, J. M. and Pohl, Martin and Rando, R. and Razzano, M. and Aboudan, A. and Ackermann, M. and Addazi, A. and Ajello, M. and Albertus, C. and Alvarez, J. M. and Ambrosi, G. and Anton, S. and Antonelli, L. A. and Babic, A. and Baibussinov, B. and Balbom, M. and Baldini, L. and Balman, S. and Bambi, C. and Barres de Almeida, U. and Barrio, J. A. and Bartels, R. and Bastieri, D. and Bednarek, W. and Bernard, D. and Bernardini, E. and Bernasconi, T. and Bertucci, B. and Biland, A. and Bissaldi, E. and Boettcher, M. and Bonvicini, V. and Bosch-Ramon, V. and Bottacini, E. and Bozhilov, V. and Bretz, T. and Branchesi, M. and Brdar, V. and Bringmann, T. and Brogna, A. and Jorgensen, C. Budtz and Busetto, G. and Buson, S. and Busso, M. and Caccianiga, A. and Camera, S. and Campana, R. and Caraveo, P. and Cardillo, M. and Carlson, P. and Celestin, S. and Cermeno, M. and Chen, A. and Cheung, C. C. and Churazov, E. and Ciprini, S. and Coc, A. and Colafrancesco, S. and Coleiro, A. and Collmar, W. and Coppi, P. and Curado da Silva, R. and Cutini, S. and De Lotto, B. and de Martino, D. and De Rosa, A. and Del Santo, M. and Delgado, L. and Diehl, R. and Dietrich, S. and Dolgov, A. D. and Dominguez, A. and Prester, D. Dominis and Donnarumma, I. and Dorner, D. and Doro, M. and Dutra, M. and Elsaesser, D. and Fabrizio, M. and Fernandez-Barral, A. and Fioretti, V. and Foffano, L. and Formato, V. and Fornengo, N. and Foschini, L. and Franceschini, A. and Franckowiak, A. and Funk, S. and Fuschino, F. and Gaggero, D. and Galanti, G. and Gargano, F. and Gasparrini, D. and Gehrz, R. and Giammaria, P. and Giglietto, N. and Giommi, P. and Giordano, F. and Giroletti, M. and Ghirlanda, G. and Godinovic, N. and Gouiffes, C. and Grove, J. E. and Hamadache, C. and Hartmann, D. H. and Hayashida, M. and Hryczuk, A. and Jean, P. and Johnson, T. and Jose, J. and Kaufmann, S. and Khelifi, B. and Kiener, J. and Knodlseder, J. and Kolem, M. and Kopp, J. and Kozhuharov, V. and Labanti, C. and Lalkovski, S. and Laurent, P. and Limousin, O. and Linares, M. and Lindfors, E. and Lindner, M. and Liu, J. and Lombardi, S. and Loparco, F. and Lopez-Coto, R. and Lopez Moya, M. and Lott, B. and Lubrano, P. and Malyshev, D. and Mankuzhiyil, N. and Mannheim, K. and Marcha, M. J. and Marciano, A. and Marcote, B. and Mariotti, M. and Marisaldi, M. and McBreen, S. and Mereghetti, S. and Merle, A. and Mignani, R. and Minervini, G. and Moiseev, A. and Morselli, A. and Moura, F. and Nakazawa, K. and Nava, L. and Nieto, D. and Orienti, M. and Orio, M. and Orlando, E. and Orleanski, P. and Paiano, S. and Paoletti, R. and Papitto, A. and Pasquato, M. and Patricelli, B. and Perez-Garcia, M. A. and Persic, M. and Piano, G. and Pichel, A. and Pimenta, M. and Pittori, C. and Porter, T. and Poutanen, J. and Prandini, E. and Prantzos, N. and Produit, N. and Profumo, S. and Queiroz, F. S. and Raino, S. and Raklev, A. and Regis, M. and Reichardt, I. and Rephaeli, Y. and Rico, J. and Rodejohann, W. and Fernandez, G. Rodriguez and Roncadelli, M. and Roso, L. and Rovero, A. and Ruffini, R. and Sala, G. and Sanchez-Conde, M. A. and Santangelo, Andrea and Parkinson, P. Saz and Sbarrato, T. and Shearer, A. and Shellard, R. and Short, K. and Siegert, T. and Siqueira, C. and Spinelli, P. and Stamerra, A. and Starrfield, S. and Strong, A. and Strumke, I. and Tavecchio, F. and Taverna, R. and Terzic, T. and Thompson, D. J. and Tibolla, O. and Torres, D. F. and Turolla, R. and Ulyanov, A. and Ursi, A. and Vacchi, A. and Van den Abeele, J. and Vankova-Kirilovai, G. and Venter, C. and Verrecchia, F. and Vincent, P. and Wang, X. and Weniger, C. and Wu, X. and Zaharijas, G. and Zampieri, L. and Zane, S. and Zimmer, S. and Zoglauer, A.}, title = {Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics}, series = {Journal of High Energy Astrophysics}, volume = {19}, journal = {Journal of High Energy Astrophysics}, publisher = {Elsevier}, address = {Amsterdam}, organization = {e-ASTROGAM Collaboration}, issn = {2214-4048}, doi = {10.1016/j.jheap.2018.07.001}, pages = {1 -- 106}, year = {2018}, language = {en} } @article{GarciaGarcia2017, author = {Garc{\´i}a, Jos{\´e} M. and Garc{\´i}a, Mar{\´i}a S.}, title = {Music and Artistic Education}, series = {Potsdamer Schriftenreihe zur Musikp{\"a}dagogik}, journal = {Potsdamer Schriftenreihe zur Musikp{\"a}dagogik}, number = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-378-7}, issn = {2196-5080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-399275}, pages = {119 -- 136}, year = {2017}, language = {en} } @article{JannaschKroegerAgnolietal.2019, author = {Jannasch, Franziska and Kr{\"o}ger, Janine and Agnoli, Claudia and Barricarte, Aurelio and Boeing, Heiner and Cayssials, Val{\´e}rie and Colorado-Yohar, Sandra and Dahm, Christina C. and Dow, Courtney and Fagherazzi, Guy and Franks, Paul W. and Freisling, Heinz and Gunter, Marc J. and Kerrison, Nicola D. and Key, Timothy J. and Khaw, Kay-Tee and K{\"u}hn, Tilman and Kyro, Cecilie and Mancini, Francesca Romana and Mokoroa, Olatz and Nilsson, Peter and Overvad, Kim and Palli, Domenico and Panico, Salvatore and Quiros Garcia, Jose Ramon and Rolandsson, Olov and Sacerdote, Carlotta and Sanchez, Maria-Jose and Sahrai, Mohammad Sediq and Sch{\"u}bel, Ruth and Sluijs, Ivonne and Spijkerman, Annemieke M. W. and Tjonneland, Anne and Tong, Tammy Y. N. and Tumino, Rosario and Riboli, Elio and Langenberg, Claudia and Sharp, Stephen J. and Forouhi, Nita G. and Schulze, Matthias Bernd and Wareham, Nicholas J.}, title = {Generalizability of a Diabetes-Associated Country-Specific Exploratory Dietary Pattern Is Feasible Across European Populations}, series = {The Journal of Nutrition}, volume = {149}, journal = {The Journal of Nutrition}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3166}, doi = {10.1093/jn/nxz031}, pages = {1047 -- 1055}, year = {2019}, abstract = {Background: Population-specificity of exploratory dietary patterns limits their generalizability in investigations with type 2 diabetes incidence. Objective: The aim of this study was to derive country-specific exploratory dietary patterns, investigate their association with type 2 diabetes incidence, and replicate diabetes-associated dietary patterns in other countries. Methods: Dietary intake data were used, assessed by country-specific questionnaires at baseline of 11,183 incident diabetes cases and 14,694 subcohort members (mean age 52.9 y) from 8 countries, nested within the European Prospective Investigation into Cancer and Nutrition study (mean follow-up time 6.9 y). Exploratory dietary patterns were derived by principal component analysis. HRs for incident type 2 diabetes were calculated by Prentice-weighted Cox proportional hazard regression models. Diabetes-associated dietary patterns were simplified or replicated to be applicable in other countries. A meta-analysis across all countries evaluated the generalizability of the diabetes-association. Results: Two dietary patterns per country/UK-center, of which overall 3 dietary patterns were diabetes-associated, were identified. A risk-lowering French dietary pattern was not confirmed across other countries: pooled HRFrance per 1 SD: 1.00; 95\% CI: 0.90, 1.10. Risk-increasing dietary patterns, derived in Spain and UK-Norfolk, were confirmed, but only the latter statistically significantly: HRSpain: 1.09; 95\% CI: 0.97, 1.22 and HRUK-Norfolk: 1.12; 95\% CI: 1.04, 1.20. Respectively, this dietary pattern was characterized by relatively high intakes of potatoes, processed meat, vegetable oils, sugar, cake and cookies, and tea. Conclusions: Only few country/center-specific dietary patterns (3 of 18) were statistically significantly associated with diabetes incidence in this multicountry European study population. One pattern, whose association with diabetes was confirmed across other countries, showed overlaps in the food groups potatoes and processed meat with identified diabetes-associated dietary patterns from other studies. The study demonstrates that replication of associations of exploratory patterns with health outcomes is feasible and a necessary step to overcome population-specificity in associations from such analyses.}, language = {en} } @article{CalsamigliaGarciaComendadorFortesaetal.2018, author = {Calsamiglia, Aleix and Garcia-Comendador, Julian and Fortesa, Josep and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Crema, S. and Cavalli, M. and Calvo-Cases, A. and Estrany, Joan}, title = {Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {318}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.06.011}, pages = {162 -- 171}, year = {2018}, abstract = {Traditional drainage systems combining man-made channels and subsurface tile drains have been used since Roman times to control water excess in Mediterranean lowland regions, favouring adequate soil water regime for agriculture purposes. However, mechanization of agriculture, abandonment or land use changes lead to a progressive deterioration of these drains in the last decades. The effects of these structures on hydrological and sediment dynamics have been previously analyzed in a small Mediterranean lowland catchment (Can Revull, Mallorca, Spain, 1.4 km2) by establishing an integrated sediment budget with a multi-technique approach. Moreover, the recent advances in morphometric techniques enable the completion of this analysis by the accurate identification of active areas (i.e. sources, pathway links, and sinks) and improve the understanding of (de-)coupling mechanisms of water and sediment linkages. In this study, the Borselli's index of connectivity (IC; Cavalli et al. (2013)'s version) derived from a LiDAR-based high resolution DEM (>1 pt m-2; RMSE < 0.2 m) was used to evaluate the spatial patterns of sediment connectivity of the catchment under two different scenarios: (1) the current scenario, including an accurate representation of the 3800 m of artificial channels and levees (CS - Channelled Scenario), and (2) a hypothetical scenario in which these anthropogenic features were removed (US - Unchannelled Scenario). Design and configuration of the drainage system in Can Revull generated changes favouring lateral decoupling between different compartments, with hillslopes-floodplain and floodplain-channels relationships, showing a general decrease of IC values, and high longitudinal connectivity along the artificial channel network. Field observations corroborated these results: structures enabled rapid drainage of the water excess also promoting low surface runoff within the field crops, proving to be an effective management practice for erosion control in agricultural Mediterranean lowland catchments. By contrast, US demonstrated that the abandonment of the current agricultural practices and the subsequent destruction of the drainage system could lead the higher soil loss rates owning to more intense/effective processes of sediment connectivity.}, language = {en} } @article{RodriguezQuilesyGarciaSoriaTorres, author = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A. and Soria Torres, Carmen M.}, title = {Musique et Communaut{\´e}s d'Apprentissage}, series = {Potsdamer Schriftenreihe zur Musikp{\"a}dagogik}, journal = {Potsdamer Schriftenreihe zur Musikp{\"a}dagogik}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, doi = {10.25932/publishup-43385}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433858}, pages = {93 -- 114}, language = {fr} } @article{GonzalezFortesKolbeFernandesetal.2016, author = {Gonz{\´a}lez-Fortes, Gloria M. and Kolbe, Ben and Fernandes, Daniel and Meleg, Ioana N. and Garcia-Vazquez, Ana and Pinto-Llona, Ana C. and Constantin, Silviu and de Torres, Trino J. and Ortiz, Jose E. and Frischauf, Christine and Rabeder, Gernot and Hofreiter, Michael and Barlow, Axel}, title = {Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13800}, pages = {4907 -- 4918}, year = {2016}, abstract = {Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago.}, language = {en} } @article{LewensteinCirauquiAngelGarciaMarchetal.2022, author = {Lewenstein, Maciej and Cirauqui, David and Angel Garcia-March, Miguel and Corominas, Guillem Guigo and Grzybowski, Przemyslaw and Saavedra, Jose R. M. and Wilkens, Martin and Wehr, Jan}, title = {Haake-Lewenstein-Wilkens approach to spin-glasses revisited}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {45}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac9d10}, pages = {20}, year = {2022}, abstract = {We revisit the Haake-Lewenstein-Wilkens approach to Edwards-Anderson (EA) model of Ising spin glass (SG) (Haake et al 1985 Phys. Rev. Lett. 55 2606). This approach consists in evaluation and analysis of the probability distribution of configurations of two replicas of the system, averaged over quenched disorder. This probability distribution generates squares of thermal copies of spin variables from the two copies of the systems, averaged over disorder, that is the terms that enter the standard definition of the original EA order parameter, qEA 0 0}, language = {en} } @book{RodriguezQuilesyGarciaHabibBidalLotonetal.2019, author = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A. and Habib, Michel and Bidal-Loton, Marie-Pierre and Leveau, Nicolas and Tassin, Martine and Verlinden, Dominique and Soria Torres, Carmen M. and Hoonhorst, Ingrid and Vancamp, Marielle and Dormoy, Alice and De Barelli, Tatiana}, title = {Bienfaits de la musique {\´a} l'{\´e}cole}, editor = {Rodr{\´i}guez-Quiles y Garc{\´i}a, Jos{\´e} A.}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-466-1}, issn = {1861-8529}, doi = {10.25932/publishup-42862}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428627}, publisher = {Universit{\"a}t Potsdam}, pages = {166}, year = {2019}, abstract = {A l'heure o{\`u} l'{\´e}ducation musicale est remise en cause par les d{\´e}cideurs de certains pays de l'Union europ{\´e}enne, la collaboration internationale et interdisciplinaire est plus que jamais n{\´e}cessaire pour d{\´e}montrer l'erreur de ces attitudes. A cette fin, l'ouvrage rassemble les r{\´e}flexions de diff{\´e}rents sp{\´e}cialistes de trois pays europ{\´e}ens qui offrent leurs points de vue sous le prisme de l'{\´e}ducation musicale mais aussi des domaines des neurosciences, de la psychologie, de la logop{\´e}die et de la politique. Cette publication combine les r{\´e}sultats de travaux empiriques avec des propositions pratiques, ce qui la rend utile pour les chercheurs, les professeurs de musique et les orthophonistes.}, language = {fr} }