@article{BronstertdeAraujoBatallaVillanuevaetal.2014, author = {Bronstert, Axel and de Araujo, Jos{\`e} Carlos and Batalla Villanueva, Ramon J. and Costa, Alexandre Cunha and Delgado, Jos{\´e} Miguel Martins and Francke, Till and F{\"o}rster, Saskia and G{\"u}ntner, Andreas and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Mamede, George Leite and Medeiros, Pedro Henrique Augusto and Mueller, Eva and Vericat, Damia}, title = {Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0994-1}, pages = {2001 -- 2018}, year = {2014}, abstract = {To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 \% of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment.}, language = {en} } @article{LoberaAndresDomenechLopezTarazonetal.2017, author = {Lobera, Gemma and Andres-Domenech, Ignacio and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Millan-Romero, Pedro and Valles, Francisco and Vericat, Damia and Batalla Villanueva, Ramon J.}, title = {Bed disturbance below dams: observations from two Mediterranean rivers}, series = {Land degradation \& development}, volume = {28}, journal = {Land degradation \& development}, publisher = {Wiley}, address = {Hoboken}, issn = {1085-3278}, doi = {10.1002/ldr.2785}, pages = {2493 -- 2512}, year = {2017}, abstract = {River-bed disturbance and associated sedimentary processes such as particle mobility are central elements to assess river ecosystem functioning. Dams change river dynamics affecting the magnitude and frequency of biophysical elements that depend on them. This paper examines the effects of two dams different in size, management, and location, on the flow regime, flood competence, and bed disturbance in two contrasting Mediterranean rivers, the Esera and the Siurana. For this purpose, two reaches on each river were monitored upstream and downstream from reservoirs. Several monitoring and modeling techniques were used to characterize flow competence, particle entrainment, and the volumes of sediments eroded and deposited after floods. The flow regime of the Esera has been modified from nivo-pluvial regime, typical of humid mountainous environments, to that observed in dry semiarid regions, in which high magnitude but low frequency floods are the dominant processes. Conversely, the flow regime of the Siurana has changed from a typical Mediterranean stream to a regime observed in more temperate environments, with more permanent and stable flows. Both rivers show notably physical changes, with channels clearly less dynamic below the dams. The lack of competent flows together with the sediment deficit associated with the dams has led to less active fluvial environments (reduced particle mobility and bed scour dynamics), a fact that affects instream habitat structure (more uniform grain size distribution, less physical heterogeneity, more stable flows), overall contributing to the degradation of the stream corridor and the subsequent environmental deterioration of the whole fluvial landscape. Copyright (c) 2017 John Wiley \& Sons, Ltd.}, language = {en} } @article{FortesaGarciaComendadorCalsamigliaetal.2019, author = {Fortesa, Josep and Garc{\´i}a-Comendador, Julian and Calsamiglia, A. and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Latron, J. and Alorda, B. and Estrany, Joan}, title = {Comparison of stage/discharge rating curves derived from different recording systems}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {665}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.02.158}, pages = {968 -- 981}, year = {2019}, abstract = {Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.e., one analogical and one digital) established in the same river location at the Mediterranean island of Mallorca. Furthermore, the effects of such uncertainties were assessed on the hydrological dynamics, considering the significant global change impacts beset this island. Evaluation was developed at four representative gauging stations of the hydrographic network with analogic (≈40 years) and digital (≈10 years) data series. The study revealed that the largest source of uncertainty in the analogical (28 to 274\%) and in the digital (17-37\%) networks were the stage-discharge rating curves. Their impact on the water resources was also evaluated at the event and annual scales, resulting in an average difference of water yields of 183\% and 142\% respectively. Such improvement on the comprehension of hydrometric networks uncertainties will dramatically benefit the interpretation of the long-term streamflow by providing better insights into the hydrologic and flood hazard planning, management and modelling.}, language = {en} } @article{CalsamigliaGarciaComendadorFortesaetal.2018, author = {Calsamiglia, Aleix and Garcia-Comendador, Julian and Fortesa, Josep and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Crema, S. and Cavalli, M. and Calvo-Cases, A. and Estrany, Joan}, title = {Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {318}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.06.011}, pages = {162 -- 171}, year = {2018}, abstract = {Traditional drainage systems combining man-made channels and subsurface tile drains have been used since Roman times to control water excess in Mediterranean lowland regions, favouring adequate soil water regime for agriculture purposes. However, mechanization of agriculture, abandonment or land use changes lead to a progressive deterioration of these drains in the last decades. The effects of these structures on hydrological and sediment dynamics have been previously analyzed in a small Mediterranean lowland catchment (Can Revull, Mallorca, Spain, 1.4 km2) by establishing an integrated sediment budget with a multi-technique approach. Moreover, the recent advances in morphometric techniques enable the completion of this analysis by the accurate identification of active areas (i.e. sources, pathway links, and sinks) and improve the understanding of (de-)coupling mechanisms of water and sediment linkages. In this study, the Borselli's index of connectivity (IC; Cavalli et al. (2013)'s version) derived from a LiDAR-based high resolution DEM (>1 pt m-2; RMSE < 0.2 m) was used to evaluate the spatial patterns of sediment connectivity of the catchment under two different scenarios: (1) the current scenario, including an accurate representation of the 3800 m of artificial channels and levees (CS - Channelled Scenario), and (2) a hypothetical scenario in which these anthropogenic features were removed (US - Unchannelled Scenario). Design and configuration of the drainage system in Can Revull generated changes favouring lateral decoupling between different compartments, with hillslopes-floodplain and floodplain-channels relationships, showing a general decrease of IC values, and high longitudinal connectivity along the artificial channel network. Field observations corroborated these results: structures enabled rapid drainage of the water excess also promoting low surface runoff within the field crops, proving to be an effective management practice for erosion control in agricultural Mediterranean lowland catchments. By contrast, US demonstrated that the abandonment of the current agricultural practices and the subsequent destruction of the drainage system could lead the higher soil loss rates owning to more intense/effective processes of sediment connectivity.}, language = {en} } @article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{EstranyRuizCalsamigliaetal.2019, author = {Estrany, Joan and Ruiz, Maurici and Calsamiglia, Aleix and Carriqui, Marc and Garcia-Comendador, Julian and Nadal, Miquel and Fortesa, Josep and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Medrano, Hipolito and Gago, Jorge}, title = {Sediment connectivity linked to vegetation using UAVs}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {671}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.399}, pages = {1192 -- 1205}, year = {2019}, abstract = {In this study, a low-cost unmanned aerial vehicle was used to obtain multi-spectral high-resolution imagery (1.4 cmpx(-1)) from2 microcatchments (3.3 ha) with burned Mediterranean shrubland and pine forests. This imagery was used to calculate the blue normalized differential vegetation index and to generate digital elevation models for estimating the sediment connectivity index. Both indices enabled an integrated approach for deciphering how hydrological and sediment connectivity interact with vegetation as well as soil conservation structures. The application of spatial analysis improves our understanding of the feedback between biological and geomorphological processes. Local spatial data analysis established a significant link between local geomorphological and biological factors, enabling a precise identification of homogeneous areas at micro-catchment scale and the minimal size of vegetation units reacting to geomorphology as natural groups at plot-scale where management strategies and efforts should be applied. Establishing this local relationship between sediment connectivity and vegetation patterns through new and interdisciplinary methodologies represents a new strategy for the assessment of ecosystem dynamics and management.}, language = {en} } @article{ParkBatallaBirgandetal.2019, author = {Park, Jungsu and Batalla, Ramon J. and Birgand, Francois and Esteves, Michel and Gentile, Francesco and Harrington, Joseph R. and Navratil, Oldrich and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Vericat, Damia}, title = {Influences of Catchment and River Channel Characteristics on the Magnitude and Dynamics of Storage and Re-Suspension of Fine Sediments in River Beds}, series = {Water}, volume = {11}, journal = {Water}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11050878}, pages = {23}, year = {2019}, abstract = {Fine particles or sediments are one of the important variables that should be considered for the proper management of water quality and aquatic ecosystems. In the present study, the effect of catchment characteristics on the performance of an already developed model for the estimation of fine sediments dynamics between the water column and sediment bed was tested, using 13 catchments distributed worldwide. The model was calibrated to determine two optimal model parameters. The first is the filtration parameter, which represents the filtration of fine sediments through pores of the stream bed during the recession period of a flood event. The second parameter is the bed erosion parameter that represents the active layer, directly related to the re-suspension of fine sediments during a flood event. A dependency of the filtration parameter with the catchment area was observed in catchments smaller than 100 km(2), whereas no particular relationship was observed for larger catchments (>100 km(2)). In contrast, the bed erosion parameter does not show a noticeable dependency with the area or other environmental characteristics. The model estimated the mass of fine sediments released from the sediment bed to the water column during flood events in the 13 catchments within 23\% bias.}, language = {en} } @article{OzturkWendiCrisologoetal.2018, author = {Ozturk, Ugur and Wendi, Dadiyorto and Crisologo, Irene and Riemer, Adrian and Agarwal, Ankit and Vogel, Kristin and Andres Lopez-Tarazon, Jose and Korup, Oliver}, title = {Rare flash floods and debris flows in southern Germany}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {626}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.01.172}, pages = {941 -- 952}, year = {2018}, abstract = {Flash floods and debris flows are iconic hazards inmountainous regions with steep relief, high rainfall intensities, rapid snowmelt events, and abundant sediments. The cuesta landscapes of southern Germany hardly come to mind when dealing with such hazards. A series of heavy rainstorms dumping up to 140mm in 2 h caused destructive flash floods and debris flows in May 2016. The most severe damage occurred in the Braunsbach municipality, which was partly buried by 42,000 m(3) of boulders, gravel, mud, and anthropogenic debris from the small catchment of Orlacher Bach (similar to 6 km(2)). We analysed this event by combining rainfall patterns, geological conditions, and geomorphic impacts to estimate an average sediment yield of 14,000 t/km(2) that mostly (similar to 95\%) came from some 50 riparian landslides and channel-bed incision of similar to 2 m. This specific sediment yield ranks among the top 20\% globally, while the intensity-duration curve of the rainstormis similarly in the upper percentile range of storms that had triggered landslides. Compared to similar-sized catchments in the greater region hit by the rainstorms, we find that the Orlacher Bach is above the 95th percentile in terms of steepness, storm-rainfall intensity, and topographic curvatures. The flash flood transported a sediment volume equal to as much as 20-40\% of the Pleistocene sediment volume stored in the Orlacher Bach fan, andmay have had several predecessors in the Holocene. River control structures from 1903 and records of a debris flow in the 1920s in a nearby catchment indicate that the local inhabitants may have been aware of the debris-flow hazards earlier. Such recurring and destructive events elude flood-hazard appraisals in humid landscapes of gentle relief, and broaden mechanistic views of how landslides and debris flows contribute to shaping small and deeply cut tributaries in the southern Germany cuesta landscape.}, language = {en} } @article{LoberaBatallaVillanuevaVericatetal.2016, author = {Lobera, G. and Batalla Villanueva, Ramon J. and Vericat, D. and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Tena, A.}, title = {Sediment transport in two mediterranean regulated rivers}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {540}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2015.08.018}, pages = {101 -- 113}, year = {2016}, abstract = {Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Esera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92\% of the total suspended sediment load in the River Siurana, while this percentage falls to 70\% for the Esera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Esera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90\%, although total runoff is only reduced in the case of the River Esera. A remarkable fact is the change of the hydrological character of the River Lem downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{LopezTarazonLopezLoberaetal.2016, author = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Lopez, Pilar and Lobera, Gemma and Batalla Villanueva, Ramon J.}, title = {Suspended sediment, carbon and nitrogen transport in a regulated Pyrenean river}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {540}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2015.06.132}, pages = {133 -- 143}, year = {2016}, abstract = {Regulation alters the characteristics of riversty transforming parts of them into lakes, affecting their hydrology and also the physical, chemical, and biological characteristics and dynamics. Reservoirs have proven to be very effective retaining particulate materials, thereby avoiding the downstream transport of suspended sediment and the chemical substances associated with it (e.g. Carbon, C or Nitrogen, N). The study of fluvial transport of C and N is of great interest since river load represents a major link to the global C and N cycles. Moreover, reservoirs are the most important sinks for organic carbon among inland waters and have a potential significance as nitrogen sinks. In this respect, this paper investigates the effects of a Pyrenean reservoir on the runoff, suspended sediment, C and N derived from the highly active Esera and Isabena rivets. Key findings indicate that the reservoir causes a considerable impact on the Esera-Isabena river fluxes, reducing them dramatically as almost all the inputs are retained within the reservoir. Despite the very dry study year (2011-2012), it can be calculated that almost 300,000 t of suspended sediment were deposited into the Barasona Reservoir, from which more than 16,000 were C (i.e. 2200 t as organic C) and 222 t were N. These values may not be seen as remarkable in a wider global context but, assuming that around 30 hm(3) of sediment are currently stored in the reservoir, figures would increase up to ca. 2.6 x 10(6) t of C (i.e. 360,000 t of organic C) and 35,000 t of N. Nevertheless, these values are indicative and should be treated with caution as there is incomplete understanding of all the processes which affect C and N. Further investigation to establish a more complete picture of C and N yields and budgets by monitoring the different processes involved is essential. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }