@article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{GossnerLewinsohnKahletal.2016, author = {Gossner, Martin M. and Lewinsohn, Thomas M. and Kahl, Tiemo and Grassein, Fabrice and Boch, Steffen and Prati, Daniel and Birkhofer, Klaus and Renner, Swen C. and Sikorski, Johannes and Wubet, Tesfaye and Arndt, Hartmut and Baumgartner, Vanessa and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Jorge, Leonardo Re and Jung, Kirsten and Keyel, Alexander C. and Klein, Alexandra-Maria and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Overmann, J{\"o}rg and Pasalic, Esther and Penone, Caterina and Perovic, David J. and Purschke, Oliver and Schall, Peter and Socher, Stephanie A. and Sonnemann, Ilja and Tschapka, Marco and Tscharntke, Teja and T{\"u}rke, Manfred and Venter, Paul Christiaan and Weiner, Christiane N. and Werner, Michael and Wolters, Volkmar and Wurst, Susanne and Westphal, Catrin and Fischer, Markus and Weisser, Wolfgang W. and Allan, Eric}, title = {Land-use intensification causes multitrophic homogenization of grassland communities}, series = {Nature : the international weekly journal of science}, volume = {540}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature20575}, pages = {266 -- +}, year = {2016}, abstract = {Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.}, language = {en} } @article{MuellerSchroederEsselbachMueller2009, author = {M{\"u}ller, Daniel and Schr{\"o}der-Esselbach, Boris and M{\"u}ller, J{\"o}rg}, title = {Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest}, issn = {0021-8375}, doi = {10.1007/s10336-009-0390-6}, year = {2009}, abstract = {The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the 'wilding' concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species-habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87\%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy.}, language = {en} } @article{MuellerBochPratietal.2018, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Prati, Daniel and Socher, Stephanie A. and Pommer, Ulf and Hessenm{\"o}ller, Dominik and Schall, Peter and Schulze, Ernst Detlef and Fischer, Markus}, title = {Effects of forest management on bryophyte species richness in Central European forests}, series = {Forest ecology and management}, volume = {432}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.019}, pages = {850 -- 859}, year = {2018}, abstract = {We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes.}, language = {en} } @article{SorkauBochBoeddinghausetal.2018, author = {Sorkau, Elisabeth and Boch, Steffen and Boeddinghaus, Runa S. and Bonkowski, Michael and Fischer, Markus and Kandeler, Ellen and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schoening, Ingo and Schrumpf, Marion and Weinert, Jan and Oelmann, Yvonne}, title = {The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {181}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201700082}, pages = {185 -- 197}, year = {2018}, abstract = {Management intensity modifies soil properties, e.g., organic carbon (C-org) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (P-mic) in soil representing an important component of the Pcycle. Our objectives were to elucidate whether abiotic and biotic variables controlling P-mic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on P-mic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwabische Alb, Hanich-Dun, and Schorfheide-Chorin, we studied forest and grassland plots (each n=150) differing in plant diversity and land-use intensity. In contrast to controls of microbial biomass carbon (C-mic), P-mic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial Puptake in forest and grassland soils. Furthermore, P-mic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil C-org is the profound driver of plant diversity effects on P-mic in grasslands. For both forest and grassland, we found regional differences in P-mic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on P-mic due to a lack of effects on controlling variables (e.g., C-org). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling P-mic or C-mic in soil differ in part and that regional differences in controlling variables are more important for P-mic in soil than those induced by management.}, language = {en} } @phdthesis{Mueller2014, author = {M{\"u}ller, J{\"o}rg}, title = {Response of bryophyte diversity to land-use and management in forest and grassland habitats}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2014}, language = {en} } @article{BlasigWinklerLassowskietal.2006, author = {Blasig, Ingolf E. and Winkler, Lars and Lassowski, Birgit and M{\"u}ller, Sandra L. and Zuleger, Nikolaj and Krause, Eberhard and Krause, Gerd and Gast, Klaus and Kolbe, Michael and Piontek, J{\"o}rg}, title = {On the self-association potential of transmembrane tight junction proteins}, issn = {1420-682X}, doi = {10.1007/s00018-005-5472-x}, year = {2006}, abstract = {Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiled-coil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported}, language = {en} } @inproceedings{HeinischRomeikeKnobelsdorfetal.2013, author = {Heinisch, Isabelle and Romeike, Ralf and Knobelsdorf, Maria and Kreitz, Christoph and Nyl{\´e}n, Aletta and D{\"o}rge, Christina and G{\"o}ttel, Timo and Holz, Jan and Bergner, Nadine and Schroeder, Ulrik and Metzger, Christiane and Haag, Johann and Abke, J{\"o}rg and Schwirtlich, Vincent and Sedelmaier, Yvonne and M{\"u}ller, Dorothee and Frommer, Andreas and Humbert, Ludger and Berges, Marc and M{\"u}hling, Andreas and Hubwieser, Peter and Steuer, Horst and Engbring, Dieter and Selke, Harald and Drews, Paul and Schirmer, Ingrid and Morisse, Marcel and Sagawe, Arno and Rolf, Arno and Friedemann, Stefan and Gr{\"o}ger, Stefan and Schumann, Matthias and Klinger, Melanie and Polutina, Olena and Bibel, Ariane and G{\"o}tz, Christian and Brinda, Torsten and Apel, Rebecca and Berg, Tobias and Bergner, Nadine and Chatti, Mohamed Amine and Leicht-Scholten, Carmen and Schroeder, Ulrik and Al-Saffar, Loay Talib and Petre, Marian and Schirmer, Ingrid and Rick, Detlef}, title = {HDI 2012 - Informatik f{\"u}r eine nachhaltige Zukunft : 5. Fachtagung Hochschuldidaktik der Informatik ; 06.-07. November 2012, Universit{\"a}t Hamburg}, editor = {Forbrig, Peter and Rick, Detlef and Schmolitzky, Axel}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-220-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62891}, pages = {169}, year = {2013}, abstract = {Die Tagungsreihe zur Hochschuldidaktik der Informatik HDI wird vom Fachbereich Informatik und Ausbildung / Didaktik der Informatik (IAD) in der Gesellschaft f{\"u}r Informatik e. V. (GI) organisiert. Sie dient den Lehrenden der Informatik in Studieng{\"a}ngen an Hochschulen als Forum der Information und des Austauschs {\"u}ber neue didaktische Ans{\"a}tze und bildungspolitische Themen im Bereich der Hochschulausbildung aus der fachlichen Perspektive der Informatik. Diese f{\"u}nfte HDI 2012 wurde an der Universit{\"a}t Hamburg organisiert. F{\"u}r sie wurde das spezielle Motto „Informatik f{\"u}r eine nachhaltige Zukunft" gew{\"a}hlt, um insbesondere Fragen der Bildungsrelevanz informatischer Inhalte, der Kompetenzen f{\"u}r Studierende informatisch gepr{\"a}gter Studieng{\"a}nge und der Rolle der Informatik in der Hochschulentwicklung zu diskutieren.}, language = {de} } @article{KrohnMaterneSchlutowetal.1999, author = {Krohn, Arne and Materne, Stefanie and Schlutow, A. and Wilhelm, R. and Metzdorf, R. and Wilk, B. and F{\"o}rster, B. and Schade, Bernd and Kitzig, Angelika and M{\"u}ller, J{\"o}rg and Haase, Walter and R{\"u}ckert-John, Jana}, title = {Agenda 21-Prozesse f{\"u}r zukunftsf{\"a}hige Kommunen in Brandenburg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-4120}, year = {1999}, abstract = {Agenda 21-Prozesse f{\"u}r zukunftsf{\"a}hige Kommunen in Brandenburg KROHN, A.: Stadtentwicklung und Lokale Agenda 21 - Zwei Seiten einer Medaille ; MATERNE, S.: Agenda 21 in Oranienburg - die Entwicklung eines Leitbildes ; SCHLUTOW, A.; WILHELM, B.; METZDORF, R.; WILK, B., F{\"O}RSTER, B.: Interessengemeinschaft "{\"O}kologie 2000 - Unternehmer f{\"u}r die Umwelt" - Anstoß der Wirtschaft f{\"u}r eine lokale Agenda 21 in Strausberg ; SCHADE, B.: Agenda 21 im Landkreis Potsdam-Mittelmark - Rahmen f{\"u}r lokale Aktivit{\"a}ten ; KITZIG, A.: Potsdam, Stadt der Toleranz - unterwegs mit Geschichts- und Verantwortungsbewußtsein f{\"u}r die Zukunft. Die Lokale Agenda 21 ; M{\"U}LLER, J.: Umsetzung eines Klimaschutzkonzeptes - Schritte zu einer nachhaltigen Entwicklung der Stadt Eberswalde , HAASE, W.: Eine lokale Agenda 21 f{\"u}r Kleinmachnow , R{\"U}CKERT-JOHN, J.: Auf dem Weg zur Nachhaltigkeit. Ergebnisse einer Dorfstudie}, language = {de} }