@article{FortesaGarciaComendadorCalsamigliaetal.2019, author = {Fortesa, Josep and Garc{\´i}a-Comendador, Julian and Calsamiglia, A. and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Latron, J. and Alorda, B. and Estrany, Joan}, title = {Comparison of stage/discharge rating curves derived from different recording systems}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {665}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.02.158}, pages = {968 -- 981}, year = {2019}, abstract = {Obtaining representative hydrometric values is essential for characterizing extreme events, hydrological dynamics and detecting possible changes on the long-term hydrology. Reliability of streamflow data requires a temporal continuity and a maintenance of the gauging stations, which data are affected by epistemic and random sources of error. An assessment of discharge meterings' and stage-discharge rating curves' uncertainties were carried out by comparing the accuracy of the measuring instruments of two different hydrometric networks (i.e., one analogical and one digital) established in the same river location at the Mediterranean island of Mallorca. Furthermore, the effects of such uncertainties were assessed on the hydrological dynamics, considering the significant global change impacts beset this island. Evaluation was developed at four representative gauging stations of the hydrographic network with analogic (≈40 years) and digital (≈10 years) data series. The study revealed that the largest source of uncertainty in the analogical (28 to 274\%) and in the digital (17-37\%) networks were the stage-discharge rating curves. Their impact on the water resources was also evaluated at the event and annual scales, resulting in an average difference of water yields of 183\% and 142\% respectively. Such improvement on the comprehension of hydrometric networks uncertainties will dramatically benefit the interpretation of the long-term streamflow by providing better insights into the hydrologic and flood hazard planning, management and modelling.}, language = {en} } @article{CalsamigliaGarciaComendadorFortesaetal.2018, author = {Calsamiglia, Aleix and Garcia-Comendador, Julian and Fortesa, Josep and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Crema, S. and Cavalli, M. and Calvo-Cases, A. and Estrany, Joan}, title = {Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {318}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.06.011}, pages = {162 -- 171}, year = {2018}, abstract = {Traditional drainage systems combining man-made channels and subsurface tile drains have been used since Roman times to control water excess in Mediterranean lowland regions, favouring adequate soil water regime for agriculture purposes. However, mechanization of agriculture, abandonment or land use changes lead to a progressive deterioration of these drains in the last decades. The effects of these structures on hydrological and sediment dynamics have been previously analyzed in a small Mediterranean lowland catchment (Can Revull, Mallorca, Spain, 1.4 km2) by establishing an integrated sediment budget with a multi-technique approach. Moreover, the recent advances in morphometric techniques enable the completion of this analysis by the accurate identification of active areas (i.e. sources, pathway links, and sinks) and improve the understanding of (de-)coupling mechanisms of water and sediment linkages. In this study, the Borselli's index of connectivity (IC; Cavalli et al. (2013)'s version) derived from a LiDAR-based high resolution DEM (>1 pt m-2; RMSE < 0.2 m) was used to evaluate the spatial patterns of sediment connectivity of the catchment under two different scenarios: (1) the current scenario, including an accurate representation of the 3800 m of artificial channels and levees (CS - Channelled Scenario), and (2) a hypothetical scenario in which these anthropogenic features were removed (US - Unchannelled Scenario). Design and configuration of the drainage system in Can Revull generated changes favouring lateral decoupling between different compartments, with hillslopes-floodplain and floodplain-channels relationships, showing a general decrease of IC values, and high longitudinal connectivity along the artificial channel network. Field observations corroborated these results: structures enabled rapid drainage of the water excess also promoting low surface runoff within the field crops, proving to be an effective management practice for erosion control in agricultural Mediterranean lowland catchments. By contrast, US demonstrated that the abandonment of the current agricultural practices and the subsequent destruction of the drainage system could lead the higher soil loss rates owning to more intense/effective processes of sediment connectivity.}, language = {en} } @article{GrafMorenodelasHerasRuizetal.2018, author = {Graf, Lukas and Moreno-de-las-Heras, Mariano and Ruiz, Maurici and Calsamiglia, Aleix and Garc{\´i}a-Comendador, Juli{\´a}n and Fortesa, Josep and L{\´o}pez-Taraz{\´o}n, Jos{\´e} A. and Estrany, Joan}, title = {Accuracy assessment of digital terrain model dataset sources for hydrogeomorphological modelling in small mediterranean catchments}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10122014}, pages = {26}, year = {2018}, abstract = {Digital terrain models (DTMs) are a fundamental source of information in Earth sciences. DTM-based studies, however, can contain remarkable biases if limitations and inaccuracies in these models are disregarded. In this work, four freely available datasets, including Shuttle Radar Topography Mission C-Band Synthetic Aperture Radar (SRTM C-SAR V3 DEM), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map (ASTER GDEM V2), and two nationwide airborne light detection and ranging (LiDAR)-derived DTMs (at 5-m and 1-m spatial resolution, respectively) were analysed in three geomorphologically contrasting, small (3-5 km2) catchments located in Mediterranean landscapes under intensive human influence (Mallorca Island, Spain). Vertical accuracy as well as the influence of each dataset's characteristics on hydrological and geomorphological modelling applicability were assessed by using ground-truth data, classic geometric and morphometric parameters, and a recently proposed index of sediment connectivity. Overall vertical accuracy—expressed as the root mean squared error (RMSE) and normalised median deviation (NMAD)—revealed the highest accuracy for the 1-m (RMSE = 1.55 m; NMAD = 0.44 m) and 5-m LiDAR DTMs (RMSE = 1.73 m; NMAD = 0.84 m). Vertical accuracy of the SRTM data was lower (RMSE = 6.98 m; NMAD = 5.27 m), but considerably higher than for the ASTER data (RMSE = 16.10 m; NMAD = 11.23 m). All datasets were affected by systematic distortions. Propagation of these errors and coarse horizontal resolution caused negative impacts on flow routing, stream network, and catchment delineation, and to a lower extent, on the distribution of slope values. These limitations should be carefully considered when applying DTMs for catchment hydrogeomorphological modelling.}, language = {en} } @article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{EstranyRuizCalsamigliaetal.2019, author = {Estrany, Joan and Ruiz, Maurici and Calsamiglia, Aleix and Carriqui, Marc and Garcia-Comendador, Julian and Nadal, Miquel and Fortesa, Josep and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Medrano, Hipolito and Gago, Jorge}, title = {Sediment connectivity linked to vegetation using UAVs}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {671}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.399}, pages = {1192 -- 1205}, year = {2019}, abstract = {In this study, a low-cost unmanned aerial vehicle was used to obtain multi-spectral high-resolution imagery (1.4 cmpx(-1)) from2 microcatchments (3.3 ha) with burned Mediterranean shrubland and pine forests. This imagery was used to calculate the blue normalized differential vegetation index and to generate digital elevation models for estimating the sediment connectivity index. Both indices enabled an integrated approach for deciphering how hydrological and sediment connectivity interact with vegetation as well as soil conservation structures. The application of spatial analysis improves our understanding of the feedback between biological and geomorphological processes. Local spatial data analysis established a significant link between local geomorphological and biological factors, enabling a precise identification of homogeneous areas at micro-catchment scale and the minimal size of vegetation units reacting to geomorphology as natural groups at plot-scale where management strategies and efforts should be applied. Establishing this local relationship between sediment connectivity and vegetation patterns through new and interdisciplinary methodologies represents a new strategy for the assessment of ecosystem dynamics and management.}, language = {en} } @article{EstranyLopezTarazonSmith2016, author = {Estrany, Joan and L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Smith, Hugh G.}, title = {WILDFIRE EFFECTS ON SUSPENDED SEDIMENT DELIVERY QUANTIFIED USING FALLOUT RADIONUCLIDE TRACERS IN A MEDITERRANEAN CATCHMENT}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {27}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {Wiley}, address = {Hoboken}, issn = {1085-3278}, doi = {10.1002/ldr.2462}, pages = {1501 -- 1512}, year = {2016}, abstract = {Over short and long timescales, wildfires can be an important cause of hydrological and geomorphological change. Mediterranean rivers are part of a fire-prone and high-energy environment in which the timing of major storms in relation to fire influences the impact on fluvial systems; accordingly, the identification of major sources, stores and fluxes of sediments is essential for providing more effective post-fire management strategies. In this study, caesium-137 and excess lead-210 were used as tracers to quantify the proportional contributions of fine sediment from hillslope surface and channel bank sources to suspended sediment and channel bed deposits before the impact of a forest wildfire in Na Borges, a Mediterranean groundwater-dominated river. It also compared burnt and unburnt spatial sources of sediment within a single catchment and the extent to which burnt material was transported downstream. The study focused on two small and steep sub-catchments, where just one of the catchments was partially affected by a wildfire. The pre-fire dynamics indicated that surface soils were the main sediment source in these ephemeral creeks. Post-fire sediment dynamics were characterised by a single flood event with a short recurrence interval (i.e. return period ca. <1 year). Sediment generated from the burnt area contributed 12\% on average to bed-stored sediments within the burnt catchment, which reduced downstream to 5\% along the main channel of the Na Borges River. The findings demonstrate the potential for using fallout radionuclide tracers to understand the wider impacts of wildfires on fluvial environments located outside of the burn area. Copyright (C) 2015 John Wiley \& Sons, Ltd.}, language = {en} }