@article{KranjcHorvatWienerSchmelingetal.2022, author = {Kranjc Horvat, Anja and Wiener, Jeff and Schmeling, Sascha and Borowski, Andreas}, title = {Learning goals of professional development programs at science research institutions}, series = {Journal of science teacher education : the official journal of the Association for the Education of Teachers in Science}, volume = {33}, journal = {Journal of science teacher education : the official journal of the Association for the Education of Teachers in Science}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1046-560X}, doi = {10.1080/1046560X.2021.1905330}, pages = {32 -- 54}, year = {2022}, abstract = {Effective professional development programs (PDPs) rely on well-defined goals. However, recent studies on PDPs have not explored the goals from a multi-stakeholder perspective. This study identifies the most important learning goals of PDPs at science research institutions as perceived by four groups of stakeholders, namely teachers, education researchers, government representatives, and research scientists. Altogether, over 100 stakeholders from 42 countries involved in PDPs at science research institutions in Europe and North America participated in a three-round Delphi study. In the first round, the stakeholders provided their opinions on what they thought the learning goals of PDPs should be through an open-ended questionnaire. In the second and third rounds, the stakeholders assessed the importance of the learning goals that emerged from the first round by rating and ranking them, respectively. The outcome of the study is a hierarchical list of the ten most important learning goals of PDPs at particle physics laboratories. The stakeholders identified enhancing teachers' knowledge of scientific concepts and models and enhancing their knowledge of the curricula as the most important learning goals. Furthermore, the results show strong agreement between all the stakeholder groups regarding the defined learning goals. Indeed, all groups ranked the learning goals by their perceived importance almost identically. These outcomes could help policymakers establish more specific policies for PDPs. Additionally, they provide PDP practitioners at science research institutions with a solid base for future research and planning endeavors.}, language = {en} } @misc{HorvatWienerSchmelingetal.2022, author = {Horvat, Anja Kranjc and Wiener, Jeff and Schmeling, Sascha Marc and Borowski, Andreas}, title = {What does the curriculum say? Review of the particle physics content in 27 high-school physics curricula}, series = {Physics}, volume = {4}, journal = {Physics}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2624-8174}, doi = {10.3390/physics4040082}, pages = {1278 -- 1298}, year = {2022}, abstract = {This international curricular review provides a structured overview of the particle physics content in 27 state, national, and international high-school physics curricula. The review was based on a coding manual that included 60 concepts that were identified as relevant for high-school particle physics education. Two types of curricula were reviewed, namely curricula with a dedicated particle physics chapter and curricula without a dedicated particle physics chapter. The results of the curricular review show that particle physics concepts are explicitly or implicitly present in all reviewed curricula. However, the number of particle physics concepts that are featured in a curriculum varies greatly across the reviewed curricula. We identified core particle physics concepts that can be found in most curricula. Here, elementary particles, fundamental interactions, and charges were identified as explicit particle physics concepts that are featured in more than half of the reviewed curricula either as content or context. Indeed, theoretical particle physics concepts are more prominent in high-school physics curricula than experimental particle physics concepts. Overall, this international curricular review provides the basis for future curricular development with respect to particle physics and suggests an increased inclusion of experimental particle physics concepts in high-school physics curricula.}, language = {en} }