@techreport{AdriaansGrieseAuspurgetal.2021, author = {Adriaans, Jule and Griese, Florian and Auspurg, Katrin and Bledow, Nona and Bohmann, Sandra and Busemeyer, Marius R. and Delhey, Jan and Goebel, Jan and Groh-Samberg, Olaf and Heckhausen, Jutta and Hinz, Thomas and Kroh, Martin and Lengfeld, Holger and Lersch, Philipp M. and Liebig, Stefan and Richter, David and Sachweh, Patrick and Schupp, J{\"u}rgen and Schwerdt, Guido and Verwiebe, Roland}, title = {Dokumentation zum Entwicklungsprozess des Moduls Einstellungen zu sozialer Ungleichheit im SOEP (v38)}, series = {SOEP survey papers, series B - survey reports (Methodenberichte)}, volume = {1071}, journal = {SOEP survey papers, series B - survey reports (Methodenberichte)}, publisher = {Deutsches Institut f{\"u}r Wirtschaftsforschung (DIW)}, address = {Berlin}, issn = {2193-5580}, pages = {35}, year = {2021}, abstract = {Im Rahmen eines einj{\"a}hrigen Entwicklungsprozesses wurde das Fragebogenmodul "Einstellungen zu sozialer Ungleichheit" unter der Leitung der Infrastruktureinrichtung SOEP entwickelt und in der 38. Welle der Haupterhebung des Sozio-oekonomischen Panels erstmalig erhoben. Das finale Fragebogenmodul umfasst 43 Items zu den Themenbereichen Soziale Vergleiche, Soziale Mobilit{\"a}t, Sozialstaat und Nicht-materielle Ungleichheit. In der Tradition des SOEP als forschungsbasierte Infrastruktureinrichtung erfolgte die Fragebogenentwicklung in enger Zusammenarbeit mit externen Forschenden aus dem Bereich der Einstellungs- und Ungleichheitsforschung. Neben der etablierten Nutzung des SOEP Innovation Samples (SOEP-IS) f{\"u}r quantitative Pretests neu entwickelter Fragen kam erstmals ein kognitiver Pretest zum Einsatz. Der vorliegende Bericht dokumentiert den Entwicklungsprozess von der Konzeption bis zum finalen Fragebogen.}, language = {de} } @article{LonsdorfKlingelhoeferJensAndreattaetal.2019, author = {Lonsdorf, Tina B. and Klingelh{\"o}fer-Jens, Maren and Andreatta, Marta and Beckers, Tom and Chalkia, Anastasia and Gerlicher, Anna and Jentsch, Valerie L. and Drexler, Shira Meir and Mertens, Gaetan and Richter, Jan and Sjouwerman, Rachel and Wendt, Julia and Merz, Christian J.}, title = {Navigating the garden of forking paths for data exclusions in fear conditioning research}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.52465}, pages = {36}, year = {2019}, abstract = {In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.}, language = {en} } @article{LonsdorfKlingelhoeferJensAndreattaetal.2019, author = {Lonsdorf, Tina B. and Klingelh{\"o}fer-Jens, Maren and Andreatta, Marta and Beckers, Tom and Chalkia, Anastasia and Gerlicher, Anna Maria Veronika and Jentsch, Valerie L. and Drexler, Shira Meir and Mertens, Gaetan and Richter, Jan and Sjouwerman, Rachel and Wendt, Julia and Merz, Christian J.}, title = {Navigating the garden of forking paths for data exclusions in fear conditioning research}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.52465}, pages = {36}, year = {2019}, language = {en} } @article{RichterKyprianidisDoellner2013, author = {Richter, Rico and Kyprianidis, Jan Eric and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Out-of-core GPU-based change detection in massive 3D point clouds}, series = {Transactions in GIS}, volume = {17}, journal = {Transactions in GIS}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1361-1682}, doi = {10.1111/j.1467-9671.2012.01362.x}, pages = {724 -- 741}, year = {2013}, abstract = {If sites, cities, and landscapes are captured at different points in time using technology such as LiDAR, large collections of 3D point clouds result. Their efficient storage, processing, analysis, and presentation constitute a challenging task because of limited computation, memory, and time resources. In this work, we present an approach to detect changes in massive 3D point clouds based on an out-of-core spatial data structure that is designed to store data acquired at different points in time and to efficiently attribute 3D points with distance information. Based on this data structure, we present and evaluate different processing schemes optimized for performing the calculation on the CPU and GPU. In addition, we present a point-based rendering technique adapted for attributed 3D point clouds, to enable effective out-of-core real-time visualization of the computation results. Our approach enables conclusions to be drawn about temporal changes in large highly accurate 3D geodata sets of a captured area at reasonable preprocessing and rendering times. We evaluate our approach with two data sets from different points in time for the urban area of a city, describe its characteristics, and report on applications.}, language = {en} } @article{SzeskaRichterWendtetal.2020, author = {Szeska, Christoph and Richter, Jan and Wendt, Julia and Weymar, Mathias and Hamm, Alfons O.}, title = {Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-58412-w}, pages = {16}, year = {2020}, abstract = {Inhibiting fear-related thoughts and defensive behaviors when they are no longer appropriate to the situation is a prerequisite for flexible and adaptive responding to changing environments. Such inhibition of defensive systems is mediated by ventromedial prefrontal cortex (vmPFC), limbic basolateral amygdala (BLA), and brain stem locus-coeruleus noradrenergic system (LC-NAs). Non-invasive, transcutaneous vagus nerve stimulation (tVNS) has shown to activate this circuit. Using a multiple-day single-cue fear conditioning and extinction paradigm, we investigated long-term effects of tVNS on inhibition of low-level amygdala modulated fear potentiated startle and cognitive risk assessments. We found that administration of tVNS during extinction training facilitated inhibition of fear potentiated startle responses and cognitive risk assessments, resulting in facilitated formation, consolidation and long-term recall of extinction memory, and prevention of the return of fear. These findings might indicate new ways to increase the efficacy of exposure-based treatments of anxiety disorders.}, language = {en} } @article{ZirafiKimStaendkeretal.2015, author = {Zirafi, Onofrio and Kim, Kyeong-Ae and St{\"a}ndker, Ludger and Mohr, Katharina B. and Sauter, Daniel and Heigele, Anke and Kluge, Silvia F. and Wiercinska, Eliza and Chudziak, Doreen and Richter, Rudolf and M{\"o}pps, Barbara and Gierschik, Peter and Vas, Virag and Geiger, Hartmut and Lamla, Markus and Weil, Tanja and Burster, Timo and Zgraja, Andreas and Daubeuf, Francois and Frossard, Nelly and Hachet-Haas, Muriel and Heunisch, Fabian and Reichetzeder, Christoph and Galzi, Jean-Luc and Perez-Castells, Javier and Canales-Mayordomo, Angeles and Jimenez-Barbero, Jesus and Gimenez-Gallego, Guillermo and Schneider, Marion and Shorter, James and Telenti, Amalio and Hocher, Berthold and Forssmann, Wolf-Georg and Bonig, Halvard and Kirchhoff, Frank and M{\"u}nch, Jan}, title = {Discovery and Characterization of an Endogenous CXCR4 Antagonist}, series = {Cell reports}, volume = {11}, journal = {Cell reports}, number = {5}, publisher = {Cell Press}, address = {Cambridge}, issn = {2211-1247}, doi = {10.1016/j.celrep.2015.03.061}, pages = {737 -- 747}, year = {2015}, abstract = {CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.}, language = {en} } @misc{BothevanderLindeRichteretal.2015, author = {Bothe, Jan Philipp and van der Linde, Benjamin and Richter, Susan and Rogger, Philippe and Petzold, Sara and Pranghofer, Sebastian}, title = {Milit{\"a}r und Gesellschaft in der Fr{\"u}hen Neuzeit}, volume = {18}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1617-9722}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79680}, year = {2015}, abstract = {Der Arbeitskreis Milit{\"a}r und Gesellschaft in der Fr{\"u}hen Neuzeit e. V. wurde im Fr{\"u}hjahr 1995 gegr{\"u}ndet. Er hat es sich zur Aufgabe gemacht, die Erforschung des Milit{\"a}rs im Rahmen der fr{\"u}hneuzeitlichen Geschichte zu bef{\"o}rdern und zugleich das Bewusstsein der Fr{\"u}hneuzeit-HistorikerInnen f{\"u}r die Bedeutung des Milit{\"a}rs in all seinen Funktionen zu wecken. Das Milit{\"a}r steht somit als soziale Gruppe selbst im Mittelpunkt der Aktivit{\"a}ten des Arbeitskreises, wird aber auch in seinen Wirkungen und Repr{\"a}sentationen thematisiert. Ziel ist es, die Rolle des Milit{\"a}rs als Teil der fr{\"u}hneuzeitlichen Gesellschaft umfassend herauszuarbeiten und zu w{\"u}rdigen. Insofern versteht der AMG seine Arbeit nicht nur als Beitrag zur Milit{\"a}rgeschichte, sondern vor allem als Beitrag zur Geschichte der Fr{\"u}hen Neuzeit insgesamt. Der Arbeitskreis bietet ein Diskussions- und Informationsforum durch die Organisation von Tagungen, die Herausgabe der Schriftenreihe ‚Herrschaft und soziale Systeme in der Fr{\"u}hen Neuzeit', die Zeitschrift ‚Milit{\"a}r und Gesellschaft in der Fr{\"u}hen Neuzeit' und die Mailingliste mil-fnz.}, language = {de} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2017, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Andersson, T. and Anguner, Ekrem Oǧuzhan and Arakawa, M. and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Blackwell, R. and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Buechele, M. and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Coffaro, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and de Wilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, Iurii and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {606}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731200}, pages = {11}, year = {2017}, abstract = {Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.}, language = {en} }