@article{SippelMeessenCacaceetal.2017, author = {Sippel, Judith and Meessen, Christian and Cacace, Mauro and Mechie, James and Fishwick, Stewart and Heine, Christian and Scheck-Wenderoth, Magdalena and Strecker, Manfred}, title = {The Kenya rift revisited}, series = {Solid earth}, volume = {8}, journal = {Solid earth}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-8-45-2017}, pages = {45 -- 81}, year = {2017}, abstract = {We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.}, language = {en} } @article{OnckenLuschenMechieetal.1999, author = {Oncken, Onno and Luschen, Ewald and Mechie, James and Sobolev, Stephan Vladimir and Schulze, Albrecht and Gaedicke, Christoph and Grunewald, Steffen and Bribach, Jens and Asch, G{\"u}nter and Giese, Peter and Wigger, Peter and Schmitz, Michael and Lueth, Stefan and Scheuber, Ekkehard and Haberland, Christian and Rietbrock, Andreas and G{\"o}tze, Hans-J{\"u}rgen and Brasse, Heinrich and Patzwahl, Regina and Chong, Guillermo and Wilke, Hans-Gerhard and Gonzalez, Gabriel and Jensen, Arturo and Araneda, Manuel and Vieytes, Hugo and Behn, Gerardo and Martinez, Eloy}, title = {Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle}, year = {1999}, language = {en} } @article{DahmStillerMechieetal.2020, author = {Dahm, Torsten and Stiller, Manfred and Mechie, James and Heimann, Sebastian and Hensch, Martin and Woith, Heiko and Schmidt, Bernd and Gabriel, Gerald and Weber, Michael}, title = {Seismological and geophysical signatures of the deep crustal magma systems of the cenozoic volcanic fields Beneath the Eifel, Germany}, series = {Geochemistry, geophysics, geosystems}, volume = {21}, journal = {Geochemistry, geophysics, geosystems}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2020GC009062}, pages = {21}, year = {2020}, abstract = {The Quaternary volcanic fields of the Eifel (Rhineland-Palatinate, Germany) had their last eruptions less than 13,000 years ago. Recently, deep low-frequency (DLF) earthquakes were detected beneath one of the volcanic fields showing evidence of ongoing magmatic activity in the lower crust and upper mantle. In this work, seismic wide- and steep-angle experiments from 1978/1979 and 1987/1988 are compiled, partially reprocessed and interpreted, together with other data to better determine the location, size, shape, and state of magmatic reservoirs in the Eifel region near the crust-mantle boundary. We discuss seismic evidence for a low-velocity gradient layer from 30-36 km depth, which has developed over a large region under all Quaternary volcanic fields of the Rhenish Massif and can be explained by the presence of partial melts. We show that the DLF earthquakes connect the postulated upper mantle reservoir with the upper crust at a depth of about 8 km, directly below one of the youngest phonolitic volcanic centers in the Eifel, where CO(2)originating from the mantle is massively outgassing. A bright spot in the West Eifel between 6 and 10 km depth represents a Tertiary magma reservoir and is seen as a model for a differentiated reservoir beneath the young phonolitic center today. We find that the distribution of volcanic fields is controlled by the Variscan lithospheric structures and terrane boundaries as a whole, which is reflected by an offset of the Moho depth, a wedge-shaped transparent zone in the lower crust and the system of thrusts over about 120 km length.}, language = {en} }