@article{FeldMechieHuebscheretal.2017, author = {Feld, Christian and Mechie, James and H{\"u}bscher, Christian and Hall, Jeremy and Nicolaides, Stelios and Gurbuz, Cemil and Bauer, Klaus and Louden, Keith and Weber, Michael}, title = {Crustal structure of the eratosthenes seamount, cyprus and S. Turkey from an amphibian wide-angle seismic profile}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {700}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.02.003}, pages = {32 -- 59}, year = {2017}, abstract = {In 2010, project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Anatolian plateau across southern Turkey and Cyprus to just south of the Eratosthenes Seamount (ESM). The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of Africa with Anatolia. Arrival picking, finite-differences ray-tracing and inversion of the offshore and on-offshore data produced a tomographic model across southern Cyprus, the accretionary wedge and the ESM. The main features of this model are (1) crustal P-velocities predominantly lower than 6.5 km/s beneath the ESM, (2) crustal thickness between 28 and 37 km, (3) an upper crustal reflection at 5 km depth beneath the ESM, (4) the likely presence of oceanic crust south of the ESM and a transform margin north of it and (5) a 12 km thick ophiolite sequence on Cyprus. Land shots on Turkey, also recorded on Cyprus, gravity data and geological and previous seismic investigations allow to derive a layered velocity model beneath Anatolia and the northern part of Cyprus. The main features of this model are (1) Moho depths of 38-45 km beneath the Anatolian plateau, (2) an upper and lower crust with large lateral changes in velocity and thickness, (3) a north-dipping subducting plate below Cyprus with a steepening of the dip-angle of the plate at about 45 km depth. Thus, the wide-angle seismic and gravity data provide detailed insights into the 2-D geometry and velocity structures associated with the Cyprus Arc collision zone. Finally, integrated analysis of the geophysics and geology allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} } @article{HallReschkeCaoetal.2014, author = {Hall, James and Reschke, Stefan and Cao, Hongnan and Leimk{\"u}hler, Silke and Hille, Russ}, title = {The reductive half-reaction of xanthine dehydrogenase from rhodobacter capsulatus the role of GLU(232) in catalysis}, series = {The journal of biological chemistry}, volume = {289}, journal = {The journal of biological chemistry}, number = {46}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M114.603456}, pages = {32121 -- 32130}, year = {2014}, abstract = {Background: Kinetic characterization of wild-type xanthine dehydrogenase and variants. Results: Comparison of the pH dependence of both k(red) and k(red)/K-d, as well as k(cat) and k(cat)/K-m. Conclusion: Ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of xanthine. Significance: Examining the contributions of Glu(232) to catalysis is essential for understanding the mechanism of xanthine dehydrogenase. The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that k(red), the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both k(red) and k(red)/K-d from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pK(a) of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.}, language = {en} } @article{RadchukReedTeplitskyetal.2019, author = {Radchuk, Viktoriia and Reed, Thomas and Teplitsky, Celine and van de Pol, Martijn and Charmantier, Anne and Hassall, Christopher and Adamik, Peter and Adriaensen, Frank and Ahola, Markus P. and Arcese, Peter and Miguel Aviles, Jesus and Balbontin, Javier and Berg, Karl S. and Borras, Antoni and Burthe, Sarah and Clobert, Jean and Dehnhard, Nina and de Lope, Florentino and Dhondt, Andre A. and Dingemanse, Niels J. and Doi, Hideyuki and Eeva, Tapio and Fickel, J{\"o}rns and Filella, Iolanda and Fossoy, Frode and Goodenough, Anne E. and Hall, Stephen J. G. and Hansson, Bengt and Harris, Michael and Hasselquist, Dennis and Hickler, Thomas and Jasmin Radha, Jasmin and Kharouba, Heather and Gabriel Martinez, Juan and Mihoub, Jean-Baptiste and Mills, James A. and Molina-Morales, Mercedes and Moksnes, Arne and Ozgul, Arpat and Parejo, Deseada and Pilard, Philippe and Poisbleau, Maud and Rousset, Francois and R{\"o}del, Mark-Oliver and Scott, David and Carlos Senar, Juan and Stefanescu, Constanti and Stokke, Bard G. and Kusano, Tamotsu and Tarka, Maja and Tarwater, Corey E. and Thonicke, Kirsten and Thorley, Jack and Wilting, Andreas and Tryjanowski, Piotr and Merila, Juha and Sheldon, Ben C. and Moller, Anders Pape and Matthysen, Erik and Janzen, Fredric and Dobson, F. Stephen and Visser, Marcel E. and Beissinger, Steven R. and Courtiol, Alexandre and Kramer-Schadt, Stephanie}, title = {Adaptive responses of animals to climate change are most likely insufficient}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-10924-4}, pages = {14}, year = {2019}, abstract = {Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.}, language = {en} }