@article{SchaererIzotovNakajimaetal.2018, author = {Schaerer, Daniel and Izotov, Yuri I. and Nakajima, K. and Worseck, Gabor and Chisholm, J. and Verhamme, A. and Thuan, T. X. and de Barros, S.}, title = {Intense C III] lambda lambda 1907,1909 emission from a strong Lyman continuum emitting galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {616}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833823}, pages = {5}, year = {2018}, abstract = {We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum (LyC) emitter at low redshift - the compact, low-metallicity, star-forming galaxy J1154+2443 - with a Lyman continuum escape fraction of 46\% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Ly alpha and C III] lambda 1909 emission, as well as O III] lambda 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(C III]) = 11.7 +/- 2.9 angstrom rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, log(xi(0)(ion)) = 25.56 erg(-1) Hz, comparable to that of other recently discovered z similar to 0.3-0.4 LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing xi(0)(ion) with increasing C III] lambda 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.}, language = {en} } @article{IzotovChisholmWorsecketal.2022, author = {Izotov, Yuri I. and Chisholm, John and Worseck, G{\´a}bor and Guseva, Natalia G. and Schaerer, Daniel and Prochaska, Jason Xavier}, title = {Lyman alpha and Lyman continuum emission of Mg II-selected star-forming galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1899}, pages = {2864 -- 2881}, year = {2022}, abstract = {We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of seven compact low-mass star-forming galaxies at redshifts, z, in the range 0.3161-0.4276, with various O3Mg2 = [O III] lambda 5007/Mg II lambda 2796+2803 and Mg-2 = Mg II lambda 2796/Mg II lambda 2803 emission-line ratios. We aim to study the dependence of leaking Lyman continuum (LyC) emission on the characteristics of Mg ii emission together with the dependencies on other indirect indicators of escaping ionizing radiation. LyC emission with escape fractions f(esc)(LyC) = 3.1-4.6 per cent is detected in four galaxies, whereas only 1 sigma upper limits of f(esc)(LyC) in the remaining three galaxies were derived. A strong narrow Ly alpha emission line with two peaks separated by V-sep similar to 298-592 km s(-1) was observed in four galaxies with detected LyC emission and very weak Ly alpha emission is observed in galaxies with LyC non-detections. Our new data confirm the tight anticorrelation between f(esc)(LyC) and V-sep found for previous low-redshift galaxy samples. V-sep remains the best indirect indicator of LyC leakage among all considered indicators. It is found that escaping LyC emission is detected predominantly in galaxies with Mg-2 greater than or similar to 1.3. A tendency of an increase of f(esc)(LyC) with increasing of both the O3Mg2 and Mg-2 is possibly present. However, there is substantial scatter in these relations not allowing their use for reliable prediction of f(esc)(LyC).}, language = {en} } @article{SchaererIzotovWorsecketal.2022, author = {Schaerer, Daniel and Izotov, Yuri I. and Worseck, G{\´a}bor and Berg, Danielle and Chisholm, John and Jaskot, Anne and Nakajima, Kimihiko and Ravindranath, Swara and Thuan, Trinh X. and Verhamme, Anne}, title = {Strong Lyman continuum emitting galaxies show intense C IV λ 1550 emission}, series = {Astronomy and astrophysics}, volume = {658}, journal = {Astronomy and astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202243149}, pages = {6}, year = {2022}, abstract = {Using the Space Telescope Imaging Spectrograph, we have obtained ultraviolet spectra from similar to 1200 to 2000 angstrom of known Lyman continuum (LyC) emitting galaxies at low redshift (z similar to 0.3-0.4) with varying absolute LyC escape fractions ( f(esc) similar to 0.01-0.72). Our observations include in particular the galaxy J1243+4646, which has the highest known LyC escape fraction at low redshift. While all galaxies are known Lyman alpha emitters, we consistently detect an inventory of additional emission lines, including C IV lambda 1550, He II lambda 1640, O III] lambda 1666, and C III] lambda 1909, whose origin is presumably essentially nebular. C IV lambda 1550 emission is detected above 4 sigma in six out of eight galaxies, with equivalent widths of EW(C IV) = 12-15 angstrom for two galaxies, which exceeds the previously reported maximum emission in low-z star-forming galaxies. We detect C IV lambda 1550 emission in all LyC emitters with escape fractions f(esc) > 0.1 and find a tentative increase in the flux ratio C IV lambda 1550 /C III] lambda 1909 with f(esc). Based on the data, we propose a new criterion to select and classify strong leakers (galaxies with f(esc) > 0.1): C IV lambda 1550 /C III] lambda 1909 greater than or similar to 0.75. Finally, we also find He II lambda 1640 emission in all the strong leakers with equivalent widths from 3 to 8 angstrom rest frame. These are among the highest values observed in star-forming galaxies and are primarily due to a high rate of ionizing photon production. The nebular He II lambda 1640 emission of the strong LyC emitters does not require harder ionizing spectra at >54 eV compared to those of typical star-forming galaxies at similarly low metallicity.}, language = {en} }