@article{PelisoliVos2019, author = {Pelisoli, Ingrid Domingos and Vos, Joris}, title = {Gaia Data Release 2 catalogue of extremely low-mass white dwarf candidates}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1876}, pages = {2892 -- 2903}, year = {2019}, abstract = {Extremely low-mass white dwarf stars (ELMs) are M < 0.3 M-circle dot helium-core white dwarfs born either as a result of a common-envelope phase or after a stable Roche lobe overflow episode in a multiple system. The Universe is not old enough for ELMs to have formed through single-star evolution channels. As remnants of binary evolution, ELMs can shed light onto the poorly understood phase of common-envelope evolution and provide constraints to the physics of mass accretion. Most known ELMs will merge in less than a Hubble time, providing an important contribution to the signal to be detected by upcoming space-based gravitational wave detectors. There are currently less than 150 known ELMs; most were selected by colour, focusing on hot objects, in a magnitude-limited survey of the Northern hemisphere only. Recent theoretical models have predicted a much larger space density for ELMs than estimated observationally based on this limited sample. In order to perform meaningful comparisons with theoretical models and test their predictions, a larger well-defined sample is required. In this work, we present a catalogue of ELM candidates selected from the second data release of Gaia (DR2). We have used predictions from theoretical models and analysed the properties of the known sample to map the space spanned by ELMs in the Gaia Hertzsprung-Russell diagram. Defining a set of colour cuts and quality flags, we have obtained a final sample of 5762 ELM candidates down to T-eff approximate to 5000 K.}, language = {en} } @article{HosseinzadehCowperthwaiteGomezetal.2019, author = {Hosseinzadeh, Griffin and Cowperthwaite, Philip S. and Gomez, Sebastian and Villar, Victoria Ashley and Nicholl, Matt and Margutti, Raffaella and Berger, Edo and Chornock, Ryan and Paterson, Kerry and Fong, Wen-fai and Savchenko, Volodymyr and Short, Phil and Alexander, Kate D. and Blanchard, Peter K. and Braga, Joao and Calkins, Michael L. and Cartier, Regis and Coppejans, Deanne L. and Eftekhari, Tarraneh and Laskar, Tanmoy and Ly, Chun and Patton, Locke and Pelisoli, Ingrid Domingos and Reichart, Daniel E. and Terreran, Giacomo and Williams, Peter K. G.}, title = {Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab271c}, pages = {14}, year = {2019}, abstract = {On 2019 April 25.346 and 26.640 UT the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo gravitational-wave (GW) observatory announced the detection of the first candidate events in Observing Run 3 that contained at least one neutron star (NS). S190425z is a likely binary neutron star (BNS) merger at d(L) = 156 +/- 41 Mpc, while S190426c is possibly the first NS-black hole (BH) merger ever detected, at d(L) = 377 +/- 100 Mpc, although with marginal statistical significance. Here we report our optical follow-up observations for both events using the MMT 6.5 m telescope, as well as our spectroscopic follow-up of candidate counterparts (which turned out to be unrelated) with the 4.1 m SOAR telescope. We compare to publicly reported searches, explore the overall areal coverage and depth, and evaluate those in relation to the optical/near-infrared (NIR) kilonova emission from the BNS merger GW170817, to theoretical kilonova models, and to short gamma-ray burst (SGRB) afterglows. We find that for a GW170817-like kilonova, the partial volume covered spans up to about 40\% for S190425z and 60\% for S190426c. For an on-axis jet typical of SGRBs, the search effective volume is larger, but such a configuration is expected in at most a few percent of mergers. We further find that wide-field gamma-ray and X-ray limits rule out luminous on-axis SGRBs, for a large fraction of the localization regions, although these searches are not sufficiently deep in the context of the gamma-ray emission from GW170817 or off-axis SGRB afterglows. The results indicate that some optical follow-up searches are sufficiently deep for counterpart identification to about 300 Mpc, but that localizations better than 1000 deg(2) are likely essential.}, language = {en} } @article{CamposPelisoliKamannetal.2018, author = {Campos, Fabiola and Pelisoli, Ingrid Domingos and Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Bellini, A. and Robinson, E. L. and Nardiello, Domenico and Piotto, G. and Kepler, S. O. and Istrate, A. G. and Winget, D. E. and Montgomery, M. H. and Dotter, A.}, title = {Outliers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2591}, pages = {4397 -- 4409}, year = {2018}, abstract = {We use Hubble Space Telescope multicolour photometry of the globular cluster 47 Tucanae to uncover a population of 24 objects with no previous classification that are outliers from the single-star model tracks in the colour-magnitude diagram and yet are likely cluster members. By comparing those sources with evolutionary models and X-ray source catalogues, we were able to show that the majority of those sources are likely binary systems that do not have any X-ray source detected nearby, most possibly formed by a white dwarf and a main-sequence star and a small number of possible double-degenerate systems.}, language = {en} } @article{MoesenlechnerPaunzenPelisolietal.2021, author = {M{\"o}senlechner, Gerald and Paunzen, Ernst and Pelisoli, Ingrid D. and Seelig, Joseph and Stidl, Sarah and Maitzen, Hans Michael}, title = {A Kepler K2 view of subdwarf A-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202037789}, pages = {11}, year = {2021}, abstract = {Context. The spectroscopic class of subdwarf A-type (sdA) stars has come into focus in recent years because of their possible link to extremely low-mass white dwarfs, a rare class of objects resulting from binary evolution. Although most sdA stars are consistent with metal-poor halo main-sequence stars, the formation and evolution of a fraction of these stars are still matters of debate. Aims. The identification of photometric variability can help to put further constraints on the evolutionary status of sdA stars, in particular through the analysis of pulsations. Moreover, the binary ratio, which can be deduced from eclipsing binaries and ellipsoidal variables, is important as input for stellar models. In order to search for variability due to either binarity or pulsations in objects of the spectroscopic sdA class, we have extracted all available high precision light curves from the Kepler K2 mission. Methods. We have performed a thorough time series analysis on all available light curves, employing three different methods. Frequencies with a signal-to-noise ratio higher than four have been used for further analysis. Results. From the 25 targets, 13 turned out to be variables of different kinds (i.e., classical pulsating stars, ellipsoidal and cataclysmic variables, eclipsing binaries, and rotationally induced variables). For the remaining 12 objects, a variability threshold was determined.}, language = {en} } @article{PelisoliDorschHeberetal.2022, author = {Pelisoli, Ingrid and Dorsch, Matti and Heber, Ulrich and G{\"a}nsicke, Boris and Geier, Stephan and Kupfer, Thomas and Nemeth, Peter and Scaringi, Simone and Schaffenroth, Veronika}, title = {Discovery and analysis of three magnetic hot subdwarf stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1069}, pages = {2496 -- 2510}, year = {2022}, abstract = {Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation.}, language = {en} } @article{CulpanGeierReindletal.2022, author = {Culpan, Richard and Geier, Stephan and Reindl, Nicole and Pelisoli, Ingrid and Gentile Fusillo, Nicola Pietro and Vorontseva, Alina}, title = {The population of hot subdwarf stars studied with Gaia}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {662}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202243337}, pages = {19}, year = {2022}, abstract = {In light of substantial new discoveries of hot subdwarfs by ongoing spectroscopic surveys and the availability of the Gaia mission Early Data Release 3 (EDR3), we compiled new releases of two catalogues of hot subluminous stars: the data release 3 (DR3) catalogue of the known hot subdwarf stars contains 6616 unique sources and provides multi-band photometry, and astrometry from Gaia EDR3 as well as classifications based on spectroscopy and colours. This is an increase of 742 objects over the DR2 catalogue. This new catalogue provides atmospheric parameters for 3087 stars and radial velocities for 2791 stars from the literature. In addition, we have updated the Gaia Data Release 2 (DR2) catalogue of hot subluminous stars using the improved accuracy of the Gaia EDR3 data set together with updated quality and selection criteria to produce the Gaia EDR3 catalogue of 61 585 hot subluminous stars, representing an increase of 21 785 objects. The improvements in Gaia EDR3 astrometry and photometry compared to Gaia DR2 have enabled us to define more sophisticated selection functions. In particular, we improved hot subluminous star detection in the crowded regions of the Galactic plane as well as in the direction of the Magellanic Clouds by including sources with close apparent neighbours but with flux levels that dominate the neighbourhood.}, language = {en} } @article{ReindlSchaffenrothFilizetal.2021, author = {Reindl, Nicole and Schaffenroth, Veronika and Filiz, Semih and Geier, Stephan and Pelisoli, Ingrid and Kepler, Souza Oliveira}, title = {Mysterious, variable, and extremely hot}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {647}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202140289}, pages = {22}, year = {2021}, abstract = {Context. About 10\% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O VIII) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole population of UHE white dwarfs, and white dwarfs showing only the He II line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He II line problem. Results. We find that 75(-13)(+8) \% of the UHE white dwarfs, and 75(-19)(+9)\% of the He II line problem white dwarfs are significantly photometrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9(2)(+4)\%), marking UHE and He II line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He II line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible.}, language = {en} } @article{GeierDorschPelisolietal.2022, author = {Geier, Stephan and Dorsch, Matti and Pelisoli, Ingrid and Reindl, Nicole and Heber, Ulrich and Irrgang, Andreas}, title = {Radial velocity variability and the evolution of hot subdwarf stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202143022}, pages = {15}, year = {2022}, abstract = {Hot subdwarf stars represent a late and peculiar stage in the evolution of low-mass stars, since they are likely formed by close binary interactions. In this work, we perform a radial velocity (RV) variability study of a sample of 646 hot subdwarfs with multi-epoch radial velocities based on spectra from Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST). The atmospheric parameters and RVs were taken from the literature. For stars with archival spectra but without literature values, we determined the parameters by fitting model atmospheres. In addition, we redetermined the atmospheric parameters and RVs for all the He-enriched sdO/Bs. This broad sample allowed us to study RV-variability as a function of the location in the T-eff - log g- and T-eff - log n(He)/n(H) diagrams in a statistically significant way. We used the fraction of RV-variable stars and the distribution of the maximum RV variations Delta RVmax as diagnostics. Both indicators turned out to be quite inhomogeneous across the studied parameter ranges. A striking feature is the completely dissimilar behaviour of He-poor and He-rich hot subdwarfs. While the former have a high fraction of close binaries, almost no significant RV variations could be detected for the latter. This has led us to the conclusion that there is likely no evolutionary connection between these subtypes. On the other hand, intermediate He-rich- and extreme He-rich sdOB/Os are more likely to be related. Furthermore, we conclude that the vast majority of this population is formed via one or several binary merger channels. Hot subdwarfs with temperatures cooler than similar to 24 000 K tend to show fewer and smaller RV-variations. These objects might constitute a new subpopulation of binaries with longer periods and late-type or compact companions. The RV-variability properties of the extreme horizontal branch (EHB) and corresponding post-EHB populations of the He-poor hot subdwarfs match and confirm the predicted evolutionary connection between them. Stars found below the canonical EHB at somewhat higher surface gravities show large RV variations and a high RV variability fraction. These properties are consistent with most of them being low-mass EHB stars or progenitors of low-mass helium white dwarfs in close binaries.}, language = {en} } @article{SchaffenrothPelisoliBarlowetal.2022, author = {Schaffenroth, Veronika and Pelisoli, Ingrid and Barlow, Brad N. and Geier, Stephan and Kupfer, Thomas}, title = {Hot subdwarfs in close binaries observed from space I.}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {666}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202244214}, pages = {19}, year = {2022}, abstract = {Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75\%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.}, language = {en} } @article{PelisoliVosGeieretal.2020, author = {Pelisoli, Ingrid and Vos, Joris and Geier, Stephan and Schaffenroth, Veronika and Baran, Andrzej S.}, title = {Alone but not lonely}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {642}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038473}, pages = {14}, year = {2020}, abstract = {Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30\%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.}, language = {en} }