@article{AbdallaAbramowskiAharonianetal.2016, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Fai{\c{c}}al Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Bottcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, Christoph and deWilt, P. and Djannati-Atai, Arache and Domainko, Wilfried and Donath, Axel and Dubus, Guillaume and Dutson, Kate and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, Stuart and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and F{\"u}ßling, Matthias and Gabici, Stefano and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, Gianluca and Giebels, B. and Glicenstein, J. F. and Gottschall, Daniel and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, Gilles and Hermann, G. and Hervet, Olivier and Hillert, A. and Hinton, James Anthony and Hofmann, Werner and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, Alex and Jacholkowska, A. and Jamrozy, Marek and Janiak, M. and Jankowsky, D. and Jankowsky, Felix and Jingo, M. and Jogler, Tobias and Jouvin, Lea and Jung-Richardt, Ira and Kastendieck, M. A. and Katarzynski, Krzysztof and Katz, Uli and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, Michael and Krayzel, F. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, Jeanie and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, Thomas and Lorentz, M. and Lui, R. and Lypova, Iryna and Marandon, Vincent and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and Meintjes, Petrus Johannes and Menzler, U. and Meyer, Manuel and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, Mathieu and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, Hirokazu and Ohm, Stefan and Oettl, S. and Ostrowski, M. and Oya, I. and Padovani, Marco and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and Prokhorov, Dmitry and Prokoph, Heike and Puehlhofer, Gerd and Punch, Michael and Quirrenbach, Andreas and Raab, S. and Reimer, Anita and Reimer, Olaf and Renaud, M. and de los Reyes, R. and Rieger, Frank and Romoli, Carlo and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, David and Sanchez, David A. and Santangelo, Andrea and Sasaki, Manami and Schlickeiser, Reinhard and Schussler, F. and Schulz, Andreas and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Simoni, R. and Sol, H. and Spanier, Felix and Spengler, G. and Spiess, F. and Stawarz, Lukasz and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Tuffs, R. and van der Walt, Johan and van Eldik, Christopher and van Soelen, Brian and Vasileiadis, Georges and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, Jacco and Voisin, F. and Voelk, Heinrich J. and Vuillaume, Thomas and Wadiasingh, Z. and Wagner, Stefan J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, Alicja and Willmann, P. and Woernlein, A. and Wouters, Denis and Yang, R. and Zabalza, Victor and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Andreas and Zefi, F. and Ziegler, A. and Zywucka, Natalia}, title = {Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with HESS}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.111301}, pages = {6}, year = {2016}, abstract = {The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section . These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe values expected from the thermal relic density for TeV DM particles.}, language = {en} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} } @phdthesis{Hofmann2006, author = {Hofmann, Thomas}, title = {Asset Management mit Immobilienaktien}, series = {Schriftenreihe Finanzierung und Banken}, volume = {11}, journal = {Schriftenreihe Finanzierung und Banken}, publisher = {Verl. Wissenschaft \& Praxis}, address = {Sternenfels}, isbn = {3-89673-286-2}, pages = {279 S. : graph. Darst.}, year = {2006}, language = {de} } @book{HofmannHuebnerSchwaigeretal.2004, author = {Hofmann, Thomas and H{\"u}bner, Roland and Schwaiger, Markus S. and Winkler, Gerhard}, title = {Das langfristige Diversifikationspotential deutscher und US-amerikanischer Immobilienaktien im Aktienfondsmanagement}, series = {Diskussionsbeitr{\"a}ge / Universit{\"a}t Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakult{\"a}t}, journal = {Diskussionsbeitr{\"a}ge / Universit{\"a}t Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakult{\"a}t}, publisher = {Univ.}, address = {Potsdam}, issn = {1433-1039}, pages = {26 S.}, year = {2004}, language = {de} } @book{HofmannHuebnerSchwaigeretal.2003, author = {Hofmann, Thomas and H{\"u}bner, Roland and Schwaiger, Markus S. and Winkler, Gerhard}, title = {Indirekte deutsche Immobilieninvestments im Portfoliomanagement}, series = {Diskussionsbeitr{\"a}ge / Universit{\"a}t Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakult{\"a}t}, journal = {Diskussionsbeitr{\"a}ge / Universit{\"a}t Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakult{\"a}t}, publisher = {Univ.}, address = {Potsdam}, issn = {1433-1039}, pages = {43 S.}, year = {2003}, language = {de} } @article{ReicheJanietzBarberkaetal.1995, author = {Reiche, J{\"u}rgen and Janietz, Dietmar and Barberka, Thomas Andreas and Hofmann, Dieter and Brehmer, Ludwig}, title = {Comprehensive structure investigation of Langmuir-Blodgett films of disc-shaped molecules}, year = {1995}, abstract = {The structure of mono- and multilayers of amphiphilic disc-shaped pentaynes wa inbestigated by Brewsterangle microscopy, X-ray specular reflection and grazing incidence diffraction (GID). X-ray specular reflection experiments confirm the "edge on" arrangement of the molecular discs. The molecular modelling of the Langmuir-Blodgett (LB)- multilayers predicts a columnar in-plane packing of the molecules. A GID experiment with monochromatic synchrotron radiation was used to verify the predicted multilayer structure on molecular level, while the Brewsterangle microscopy gave a deeper insight in the monolayer in-plane structure on micron scale.}, language = {en} } @article{ReicheBarberkaJanietzetal.1994, author = {Reiche, J{\"u}rgen and Barberka, Thomas Andreas and Janietz, Dietmar and Hofmann, Dieter and Pietsch, Ullrich and Brehmer, Ludwig}, title = {X-ray structure investigation and computer modelling of Langmuir-Blodgett films formed from disc-shaped pentaalkines}, year = {1994}, language = {en} } @article{BehrensFrankRaweletal.2014, author = {Behrens, Maik and Frank, Oliver and Rawel, Harshadrai Manilal and Ahuja, Gaurav and Potting, Christoph and Hofmann, Thomas and Meyerhof, Wolfgang and Korsching, Sigrun}, title = {ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone}, series = {The journal of biological chemistry}, volume = {289}, journal = {The journal of biological chemistry}, number = {28}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M114.573162}, pages = {19778 -- 19788}, year = {2014}, abstract = {The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors.}, language = {en} } @article{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and K{\"o}hler, Gerd and Hofmann, Peter}, title = {Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0136489}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @article{MaromCarusoRenetal.2012, author = {Marom, Noa and Caruso, Fabio and Ren, Xinguo and Hofmann, Oliver T. and K{\"o}rzd{\"o}rfer, Thomas and Chelikowsky, James R. and Rubio, Angel and Scheffler, Matthias and Rinke, Patrick}, title = {Benchmark of GW methods for azabenzenes}, series = {Physical review : B, Condensed matter and materials physics}, volume = {86}, journal = {Physical review : B, Condensed matter and materials physics}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.86.245127}, pages = {16}, year = {2012}, abstract = {Many-body perturbation theory in the GW approximation is a useful method for describing electronic properties associated with charged excitations. A hierarchy of GW methods exists, starting from non-self-consistent G(0)W(0), through partial self-consistency in the eigenvalues and in the Green's function (scGW(0)), to fully self-consistent GW (scGW). Here, we assess the performance of these methods for benzene, pyridine, and the diazines. The quasiparticle spectra are compared to photoemission spectroscopy (PES) experiments with respect to all measured particle removal energies and the ordering of the frontier orbitals. We find that the accuracy of the calculated spectra does not match the expectations based on their level of self-consistency. In particular, for certain starting points G(0)W(0) and scGW(0) provide spectra in better agreement with the PES than scGW.}, language = {en} } @misc{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {497}, issn = {1866-8364}, doi = {10.25932/publishup-40834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408342}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @article{FritzTagleAshworthetal.2016, author = {Fritz, Joerg and Tagle, Roald and Ashworth, Luisa and Schmitt, Ralf Thomas and Hofmann, Axel and Luais, Beatrice and Harris, Phillip D. and Hoehnel, Desiree and {\"O}zdemir, Seda and Mohr-Westheide, Tanja and Koeberl, Christian}, title = {Nondestructive spectroscopic and petrochemical investigations of Paleoarchean spherule layers from the ICDP drill core BARB5, Barberton Mountain Land, South Africa}, series = {Quaestiones geographicae}, volume = {51}, journal = {Quaestiones geographicae}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, doi = {10.1111/maps.12736}, pages = {2441 -- 2458}, year = {2016}, abstract = {A Paleoarchean impact spherule-bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro-X-ray fluorescence (lXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer-scale, assisted in the localization and characterization of eight spherule-bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The lXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni-Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3-rich and can be distinguished from the Al2O3-poor marine sediments by distinct Al-OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al-OH-rich spherule layers in Al2O3-poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.}, language = {en} } @article{MoserMaderTschakertetal.2016, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus}, series = {Nutrients}, volume = {8}, journal = {Nutrients}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu8080489}, pages = {15}, year = {2016}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol.L-1, -0.45 (-3.95, 3.05) mmol.L-1, -0.31 (-8.83, 8.20) mmol.L-1 and at 1.17 (-2.06, 4.40) mmol.L-1, 0.11 (-5.79, 6.01) mmol.L-1, 1.48 (-2.60, 5.57) mmol.L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @article{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {8}, publisher = {Public Library of Science}, address = {Lawrence}, issn = {1932-6203}, doi = {10.1371/journal.pone.0136489}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/ Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @misc{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82479}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/ Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @misc{MoserMaderTschakertetal.2017, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during continuous and high-intensity interval exercise in patients with Type 1 Diabetes Mellitus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400470}, pages = {15}, year = {2017}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol·L-1, -0.45 (-3.95, 3.05) mmol·L-1, -0.31 (-8.83, 8.20) mmol·L-1 and at 1.17 (-2.06, 4.40) mmol·L-1, 0.11 (-5.79, 6.01) mmol·L-1, 1.48 (-2.60, 5.57) mmol·L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @misc{MoserMuellerTschakertetal.2017, author = {Moser, Othmar and Mueller, Alexander and Tschakert, Gerhard and Koehler, Gerd and Lawrence, Jimmy B. and Groeschl, Werner and Pieber, Thomas R. and Bracken, Richard M. and Hofmann, Peter}, title = {Exercise Prescription in Type 1 Diabetes: Should We Use Percentages of Maximum Heart Rate?}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {49}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000519798.35679.cf}, pages = {1020 -- 1020}, year = {2017}, language = {en} } @misc{ClahsenSiegmuellerPenkeetal.2013, author = {Clahsen, Harald and Siegm{\"u}ller, Julia and Penke, Martina and Schr{\"o}der, Astrid and Hofmann, Janine and Holzgrefe-Lang, Julia and Skerra, Antje and Adani, Flavia and Gagarina, Natalʹja Vladimirovna and Schr{\"o}ter, Carolin and Frieg, Hendrike and Belke, Eva and Schwab, Susanne and Seifert, Susanne and Watko, Petra and Obendrauf, Tanja and Trauntschnig, Mike and Gasteiger-Klicpera, Barbara and Adelt, Anne and Hanne, Sandra and Burchert, Frank and Swietza, Romy and Doppelbauer, Lea and Dralle, Jenny and Purat, Patricia and Webersinke, Dorothea and Schwytay, Jeannine and Stadie, Nicole and Hoppe, Carina and Heide, Judith and Marusch, Tina and von der Malsburg, Titus Raban and Bastiaanse, Roelien and Schultheiss, Corinna and Nahrstaedt, Holger and Schauer, Thomas and Seidl, Rainer Ottis and Rath, Elisa}, title = {Spektrum Patholinguistik = Schwerpunktthema: Labyrinth Grammatik: Therapie von syntaktischen St{\"o}rungen bei Kindern und Erwachsenen}, number = {6}, editor = {Fritzsche, Tom and Meyer, Corinna B. and Adelt, Anne and Roß, Jennifer}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Verband f{\"u}r Patholinguistik e. V. (vpl)}, isbn = {978-3-86956-270-4}, issn = {1869-3822}, doi = {10.25932/publishup-6612}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67659}, year = {2013}, abstract = {Das Herbsttreffen Patholinguistik wird seit 2007 j{\"a}hrlich vom Verband f{\"u}r Patholinguistik e.V. (vpl) durchgef{\"u}hrt. Das 6. Herbsttreffen mit dem Schwerpunktthema "Labyrinth Grammatik: Therapie von syntaktischen St{\"o}rungen bei Kindern und Erwachsenen" fand am 17.11.2012 in Potsdam statt. Im vorliegenden Tagungsband finden sich alle Beitr{\"a}ge der Veranstaltung: die vier Hauptvortr{\"a}ge zum Schwerpunkthema, die Vortr{\"a}ge aus Praxis und Forschung von vier Patholinguistinnen in der Reihe Spektrum Patholinguistik sowie die Abstracts der Posterpr{\"a}sentation.}, language = {de} }