@article{ShenarSablowskiHainichetal.2019, author = {Shenar, Tomer and Sablowski, D. P. and Hainich, Rainer and Todt, Helge Tobias and Moffat, Anthony F. J. and Oskinova, Lida and Ramachandran, Varsha and Sana, Hugues and Sander, Andreas Alexander Christoph and Schnurr, O. and St-Louis, N. and Vanbeveren, D. and Gotberg, Y. and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud Spectroscopy, orbital analysis, formation, and evolution}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201935684}, pages = {68}, year = {2019}, abstract = {Context. Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z approximate to 0.5 Z(circle dot)), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45 +/- 30\% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only approximate to 12 +/- 7\% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12\% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises approximate to 4\% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L approximate to 5.2 [L-circle dot], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (v(eq) less than or similar to 250 km s(-1)) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.}, language = {en} } @article{HuenemoerderOskinovaIgnaceetal.2012, author = {H{\"u}nem{\"o}rder, David P. and Oskinova, Lida and Ignace, Richard and Waldron, Wayne L. and Todt, Helge Tobias and Hamaguchi, Kenji and Kitamoto, Shunji}, title = {On the weak-wind problem in massive stars X-ray spectra reveal a massive hot wind in mu columbaea}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {756}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/756/2/L34}, pages = {5}, year = {2012}, abstract = {mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"-identified from cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.}, language = {en} } @article{RamachandranHamannOskinovaetal.2019, author = {Ramachandran, Varsha and Hamann, Wolf-Rainer and Oskinova, Lida and Gallagher, J. S. and Hainich, Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Fulmer, Leah M.}, title = {Testing massive star evolution, star formation history, and feedback at low metallicity}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935365}, pages = {20}, year = {2019}, abstract = {Stars that start their lives with spectral types O and early B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully explored. Here we report a spectroscopic study of 320 massive stars of spectral types O (23 stars) and B (297 stars) in the Wing of the Small Magellanic Cloud (SMC). The spectra, which we obtained with the ESO Very Large Telescope, were analyzed using state-of-the-art stellar atmosphere models, and the stellar parameters were determined. We find that the stellar winds of our sample stars are generally much weaker than theoretically expected. The stellar rotation rates show broad, tentatively bimodal distributions. The upper Hertzsprung-Russell diagram (HRD) is well populated by the stars of our sample from a specific field in the SMC Wing. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below similar to 30 M-circle dot seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, stars with initially more than similar to 30 M-circle dot appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of massive star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales.}, language = {en} } @article{SanderHamannTodtetal.2019, author = {Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Todt, Helge Tobias and Hainich, Rainer and Shenar, Tomer and Ramachandran, Varsha and Oskinova, Lida}, title = {The Galactic WC and WO stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833712}, pages = {19}, year = {2019}, abstract = {Wolf-Rayet stars of the carbon sequence (WC stars) are an important cornerstone in the late evolution of massive stars before their core collapse. As core-helium burning, hydrogen-free objects with huge mass-loss, they are likely the last observable stage before collapse and thus promising progenitor candidates for type Ib/c supernovae. Their strong mass-loss furthermore provides challenges and constraints to the theory of radiatively driven winds. Thus, the determination of the WC star parameters is of major importance for several astrophysical fields. With Gaia DR2, for the first time parallaxes for a large sample of Galactic WC stars are available, removing major uncertainties inherent to earlier studies. In this work, we re-examine a previously studied sample of WC stars to derive key properties of the Galactic WC population. All quantities depending on the distance are updated, while the underlying spectral analyzes remain untouched. Contrasting earlier assumptions, our study yields that WC stars of the same subtype can significantly vary in absolute magnitude. With Gaia DR2, the picture of the Galactic WC population becomes more complex: We obtain luminosities ranging from log L/L-circle dot = 4.9-6.0 with one outlier (WR 119) having log L/L-circle dot = 4.7. This indicates that the WC stars are likely formed from a broader initial mass range than previously assumed. We obtain mass-loss rates ranging between log(M) over dot = -5.1 and -4.1, with (M) over dot proportional to L-0.68 and a linear scaling of the modified wind momentum with luminosity. We discuss the implications for stellar evolution, including unsolved issues regarding the need of envelope inflation to address the WR radius problem, and the open questions in regard to the connection of WR stars with Gamma-ray bursts. WC and WO stars are progenitors of massive black holes, collapsing either silently or in a supernova that most-likely has to be preceded by a WO stage.}, language = {en} } @article{HamannGraefenerLiermannetal.2019, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G. and Liermann, A. and Hainich, Rainer and Sander, Andreas Alexander Christoph and Shenar, Tomer and Ramachandran, Varsha and Todt, Helge Tobias and Oskinova, Lida}, title = {The Galactic WN stars revisited}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834850}, pages = {11}, year = {2019}, abstract = {Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD.}, language = {en} } @article{HainichRamachandranShenaretal.2019, author = {Hainich, Rainer and Ramachandran, Varsha and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gruner, David and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833787}, pages = {12}, year = {2019}, abstract = {The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of models. Here we provide grids of model atmospheres for OB-type stars at metallicities corresponding to the Small and Large Magellanic Clouds, as well as to solar metallicity. In total, the grids comprise 785 individual models. The models were calculated using the state-of-the-art Potsdam Wolf-Rayet (PoWR) model atmosphere code. The parameter domain of the grids was set up using stellar evolution tracks. For all these models, we provide normalized and flux-calibrated spectra, spectral energy distributions, feedback parameters such as ionizing photons, Zanstra temperatures, and photometric magnitudes. The atmospheric structures (the density and temperature stratification) are available as well. All these data are publicly accessible through the PoWR website.}, language = {en} } @article{EvansHainichOskinovaetal.2012, author = {Evans, C. J. and Hainich, Rainer and Oskinova, Lida and Gallagher, J. S. and Chu, Y.-H. and Gruendl, R. A. and Hamann, Wolf-Rainer and Henault-Brunet, V. and Todt, Helge Tobias}, title = {A rare early-type star revealed in the wing of the small megellanic cloud}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {753}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/753/2/173}, pages = {10}, year = {2012}, abstract = {Sk 183 is the visually brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption, which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46 +/- 2 kK, a low mass-loss rate of similar to 10(-7) M-circle dot yr(-1), and a spectroscopic mass of 46(-8)(+ 9) M-circle dot (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (similar to 47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionizing photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.}, language = {en} } @article{HainichRuehlingTodtetal.2014, author = {Hainich, Rainer and Ruehling, Ute and Todt, Helge Tobias and Oskinova, Lida and Liermann, A. and Graefener, G. and Foellmi, C. and Schnurr, O. and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {565}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322696}, pages = {62}, year = {2014}, abstract = {Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12\% of our sample are more luminous than 10(6) L-circle dot and contain a significant amount of hydrogen, 88\% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L-circle dot) = 5.3 ... 5.8. Conclusions. While the few extremely luminous stars (log (L/L-circle dot) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L-circle dot) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M-circle dot. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.}, language = {en} } @article{OskinovaNazeTodtetal.2014, author = {Oskinova, Lida and Naze, Yael and Todt, Helge Tobias and Huenemoerder, David P. and Ignace, Richard and Hubrig, Swetlana and Hamann, Wolf-Rainer}, title = {Discovery of X-ray pulsations from a massive star}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5024}, pages = {9}, year = {2014}, abstract = {X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star xi(1) CMa. This star is a variable of beta Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.}, language = {en} } @article{OskinovaTodtIgnaceetal.2011, author = {Oskinova, Lida and Todt, Helge Tobias and Ignace, Richard and Brown, John C. and Cassinelli, Joseph P. and Hamann, Wolf-Rainer}, title = {Early magnetic B-type stars X-ray emission and wind properties}, series = {Monthly notices of the Royal Astronomical Society}, volume = {416}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2011.19143.x}, pages = {1456 -- 1474}, year = {2011}, abstract = {We present a comprehensive study of X-ray emission by, and wind properties of, massive magnetic early B-type stars. Dedicated XMM-Newton observations were obtained for three early-type B-type stars, xi(1) CMa, V2052 Oph and zeta Cas, with recently discovered magnetic fields. We report the first detection of X-ray emission from V2052 Oph and zeta Cas. The latter is one the softest X-ray sources among the early-type stars, while the former is one of the X-ray faintest. The observations show that the X-ray spectra of our programme stars are quite soft with the bulk of X-ray emitting material having a temperature of about 1 MK. We compile the complete sample of early B-type stars with detected magnetic fields to date and existing X-ray measurements, in order to study whether the X-ray emission can be used as a general proxy for stellar magnetism. We find that the X-ray properties of early massive B-type magnetic stars are diverse, and that hard and strong X-ray emission does not necessarily correlate with the presence of a magnetic field, corroborating similar conclusions reached earlier for the classical chemically peculiar magnetic Bp-Ap stars. We analyse the ultraviolet (UV) spectra of five non-supergiant B stars with magnetic fields (tau Sco, beta Cep, xi(1) CMa, V2052 Oph and zeta Cas) by means of non-local thermodynamic equilibrium (non-LTE) iron-blanketed model atmospheres. The latter are calculated with the Potsdam Wolf-Rayet (PoWR) code, which treats the photosphere as well as the wind, and also accounts for X-rays. With the exception of t Sco, this is the first analysis of these stars by means of stellar wind models. Our models accurately fit the stellar photospheric spectra in the optical and the UV. The parameters of X-ray emission, temperature and flux are included in the model in accordance with observations. We confirm the earlier findings that the filling factors of X-ray emitting material are very high. Our analysis reveals that the magnetic early-type B stars studied here have weak winds with velocities not significantly exceeding upsilon(esc). The mass-loss rates inferred from the analysis of UV lines are significantly lower than predicted by hydrodynamically consistent models. We find that, although the X-rays strongly affect the ionization structure of the wind, this effect is not sufficient in reducing the total radiative acceleration. When the X-rays are accounted for at the intensity and temperatures observed, there is still sufficient radiative acceleration to drive a stronger mass-loss than we empirically infer from the UV spectral lines.}, language = {en} }