@article{HattermannLevermann2010, author = {Hattermann, Tore and Levermann, Anders}, title = {Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica}, issn = {0930-7575}, doi = {10.1007/s00382-009-0643-3}, year = {2010}, abstract = {We investigate the large-scale oceanic features determining the future ice shelf-ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157-170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1\% per year CO2-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 x 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO2 concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one.}, language = {en} } @article{SeroussiNowickiPayneetal.2020, author = {Seroussi, Helene and Nowicki, Sophie and Payne, Antony J. and Goelzer, Heiko and Lipscomb, William H. and Abe-Ouchi, Ayako and Agosta, Cecile and Albrecht, Torsten and Asay-Davis, Xylar and Barthel, Alice and Calov, Reinhard and Cullather, Richard and Dumas, Christophe and Galton-Fenzi, Benjamin K. and Gladstone, Rupert and Golledge, Nicholas R. and Gregory, Jonathan M. and Greve, Ralf and Hattermann, Tore and Hoffman, Matthew J. and Humbert, Angelika and Huybrechts, Philippe and Jourdain, Nicolas C. and Kleiner, Thomas and Larour, Eric and Leguy, Gunter R. and Lowry, Daniel P. and Little, Chistopher M. and Morlighem, Mathieu and Pattyn, Frank and Pelle, Tyler and Price, Stephen F. and Quiquet, Aurelien and Reese, Ronja and Schlegel, Nicole-Jeanne and Shepherd, Andrew and Simon, Erika and Smith, Robin S. and Straneo, Fiammetta and Sun, Sainan and Trusel, Luke D. and Van Breedam, Jonas and van de Wal, Roderik S. W. and Winkelmann, Ricarda and Zhao, Chen and Zhang, Tong and Zwinger, Thomas}, title = {ISMIP6 Antarctica}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3033-2020}, pages = {3033 -- 3070}, year = {2020}, abstract = {Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.}, language = {en} }