@article{VeronigPodladchikovaDissaueretal.2018, author = {Veronig, Astrid M. and Podladchikova, Tatiana and Dissauer, Karin and Temmer, Manuela and Seaton, Daniel B. and Long, David and Guo, Jingnan and Vrsnak, Bojan and Harra, Louise and Kliem, Bernhard}, title = {Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {868}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaeac5}, pages = {17}, year = {2018}, abstract = {The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology, and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T approximate to 10-15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T approximate to 1-2 MK). The CME shell develops from a dense set of large AR loops ( greater than or similar to 0.5R(s)) and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all reaching values of 5-10 km s(-2). The acceleration peaks occur simultaneously with the first RHESSI 100-300 keV hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the CME shell causes a distinct deformation of the white-light CME front and shock.}, language = {en} } @article{TeriacaAndrettaAuchereetal.2012, author = {Teriaca, Luca and Andretta, Vincenzo and Auchere, Frederic and Brown, Charles M. and Buchlin, Eric and Cauzzi, Gianna and Culhane, J. Len and Curdt, Werner and Davila, Joseph M. and Del Zanna, Giulio and Doschek, George A. and Fineschi, Silvano and Fludra, Andrzej and Gallagher, Peter T. and Green, Lucie and Harra, Louise K. and Imada, Shinsuke and Innes, Davina and Kliem, Bernhard and Korendyke, Clarence and Mariska, John T. and Martinez-Pillet, Valentin and Parenti, Susanna and Patsourakos, Spiros and Peter, Hardi and Poletto, Luca and Rutten, Robert J. and Schuehle, Udo and Siemer, Martin and Shimizu, Toshifumi and Socas-Navarro, Hector and Solanki, Sami K. and Spadaro, Daniele and Trujillo-Bueno, Javier and Tsuneta, Saku and Dominguez, Santiago Vargas and Vial, Jean-Claude and Walsh, Robert and Warren, Harry P. and Wiegelmann, Thomas and Winter, Berend and Young, Peter}, title = {LEMUR large european module for solar ultraviolet research}, series = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, volume = {34}, journal = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0922-6435}, doi = {10.1007/s10686-011-9274-x}, pages = {273 -- 309}, year = {2012}, abstract = {The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 and 1270 . The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s (-aEuro parts per thousand 1) or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.}, language = {en} }