@article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, doi = {10.1039/B919973j}, year = {2010}, abstract = {The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250).}, language = {en} } @article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, year = {2010}, language = {en} } @misc{SchwarzeRiemerMuelleretal.2019, author = {Schwarze, Thomas and Riemer, Janine and M{\"u}ller, Holger and John, Leonard and Holdt, Hans-J{\"u}rgen and Wessig, Pablo}, title = {Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1136}, issn = {1866-8372}, doi = {10.25932/publishup-43748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437482}, pages = {13}, year = {2019}, abstract = {Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.}, language = {en} } @article{SchwarzeMuellerSchmidtetal.2017, author = {Schwarze, Thomas and Mueller, Holger and Schmidt, Darya and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {Design of Na+-Selective Fluorescent Probes: A Systematic Study of the Na+-Complex Stability and the Na+/K+ Selectivity in Acetonitrile and Water}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605986}, pages = {7255 -- 7263}, year = {2017}, abstract = {There is a tremendous demand for highly Na+-selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+/K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme 1) to investigate the Na+/K+ selectivity and Na(+-)complex stability in CH3CN and H2O. These Na+-probes bear different 15-crown-5 moieties to bind Na+ stronger than K+. In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1 > 3 > 2 > 4 > 5 in CH3CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3CN the highest Na+-induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+-complex stability of 1-4 in CH3CN is enhanced in the following order of 2 > 4 > 3 > 1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+-complex formation. Furthermore, we found for the N( o-methoxyphenyl) aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2O, an enhanced Na+-complex stability in the following order 8 > 2 > 9 and an increased Na+/K+ selectivity in the reverse order 9 > 2 > 8. Notably, the Na+-induced FE of 8 (FEF = 10.9), 2 (FEF = 5.0) and 9 (FEF = 2.0) showed a similar trend associated with a decreased K+-induced FE [8 (FEF = 2.7) > 2 (FEF = 1.5) > 9 (FEF = 1.1)]. Here, the Na+-complex stability and Na+/K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (K-d = 48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+/K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm.}, language = {en} } @article{SchwarzeMuellerAstetal.2014, author = {Schwarze, Thomas and M{\"u}ller, Holger and Ast, Sandra and Steinbr{\"u}ck, D{\"o}rte and Eidner, Sascha and Geißler, Felix and Kumke, Michael Uwe and Holdt, Hans-J{\"u}rgen}, title = {Fluorescence lifetime-based sensing of sodium by an optode}, series = {Chemical Communications}, journal = {Chemical Communications}, editor = {Kumke, Michael Uwe}, publisher = {The Royal Society Chemistry}, address = {Cambridge}, issn = {0022-4936}, pages = {14167 -- 14170}, year = {2014}, abstract = {We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1-10 mM by measuring reversible fluorescence decay time changes.}, language = {en} } @article{BrietzkeMicklerKellingetal.2012, author = {Brietzke, Thomas Martin and Mickler, Wulfhard and Kelling, Alexandra and Schilde, Uwe and Kr{\"u}ger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {Mono- and dinuclear Ruthenium(II)-1,6,7,12-Tetraazaperylene complexes of N,N '-Dimethyl-2,11-diaza[3.3](2,6)-pyridinophane}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {29}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200667}, pages = {4632 -- 4643}, year = {2012}, abstract = {Ruthenium(II) complexes [Ru(L-N4Me2)(dape)](PF6)2 {[1](PF6)2}, [Ru(L-N4Me2)(tape)](PF6)2 {[2](PF6)2}, and [{Ru(L-N4Me2)}2(mu-tape)](PF6)4 {[3](PF6)4} were synthesized in two reaction steps by first reacting [Ru(DMSO)4Cl2] with tetraazamacrocyclic ligand N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) in ethanol under microwave irradiation to the intermediate [Ru(L-N4Me2)Cl2], which was subsequently, without further isolation, reacted with 1,12-diazaperylene (dape) or 1,6,7,12-tetraazaperylene (tape). X-ray structures of [Ru(L-N4Me2)(dape)](PF6)2, [Ru(L-N4Me2)(tape)](PF6)2.acetone, and [{Ru(L-N4Me2)}2(mu-tape)](ClO4)4.MeCN were determined. The UV/Vis absorption spectra of [1](PF6)2, [2](PF6)2, and [3](PF6)4 in acetonitrile display intense low-energy dp(Ru)?p* (dape or tape) MLCT absorption bands centered at 579, 637, and 794 nm, respectively. Reversible metal oxidations for the bimetallic complex [{Ru(L-N4Me2)}2(mu-tape)]4+ ([3]4+) are detected at 1.69 and 1.28 V vs. SCE. The potential difference ?E = 410 mV and the intervalence-charge-transfer (IVCT) transition at 2472 nm indicate a high degree of electronic interaction between the two ruthenium ions mediated through the tape bridging ligand. All three complexes, [1]2+, [2]2+, and [3]4+, were characterized by UV/Vis spectroelectrochemistry. The monooxidized and monoreduced states, [1]3+, [2]3+, [3]5+, and [1]+, [2]+, [3]3+, are accessible by reversible one-electron oxidation and one-electron reduction processes, respectively, as documented by the observation of several stable isosbestic points in the spectral progressions. The second reduction in each complex and the second oxidation in [3]4+ prove to be irreversible in these spectroelectrochemical experiments. Monoreduced species [1]+, [2]+, and [3]3+ yield EPR signals indicating that the unpaired electron is mainly centered on the large surface ligands dape or tape.}, language = {en} } @article{TraegerKoenigStaedtkeetal.2012, author = {Tr{\"a}ger, Juliane and K{\"o}nig, Jana and St{\"a}dtke, Anja and Holdt, Hans-J{\"u}rgen}, title = {Development of a solvent extraction system with 1,2-bis(2-methoxyethylthio) benzene for the selective separation of palladium(II) from secondary raw materials}, series = {Hydrometallurgy : an international journal devoted to all aspects of the aqueous processing of metals}, volume = {127}, journal = {Hydrometallurgy : an international journal devoted to all aspects of the aqueous processing of metals}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-386X}, doi = {10.1016/j.hydromet.2012.07.002}, pages = {30 -- 38}, year = {2012}, abstract = {The chelating dithioether 1,2-bis(2-methoxyethylthio)benzene. a novel solvent extractant for Pd(II), is aimed to be utilised in the selective recovery of palladium from spent automotive catalysts. For that, the extraction system has been further customised, including the choice of an appropriate diluent (1,2-dichlorobenzene) as well as an effective stripping agent (0.5 M thiourea in 0.1 M HCl), which both have been selected from a number of potential agents. It is shown in batch experiments that the selectivity for Pd(II) is maintained when the organic phase (10(-2) M 1,2-bis(2-methoxyethylthio)benzene in 1,2-dichlorobenzene) is used several times to extract an oxidising leach solution. According to the McCabe-Thiele plot two theoretical stages are needed to extract more than 98\% of the Pd(II) contained in that solution. The calculation of the thermodynamic quantities Delta H degrees. Delta S degrees and Delta G degrees reveals that the reaction is entropy driven - the temperature has only a slight influence on the extraction yield. It is demonstrated that the mono-oxidised extractant has a catalytic effect on the extraction kinetics when the aqueous phase contains highly concentrated hydrochloric acid. HPLC measurements prove the presence of small quantities of 1-(2-methoxyethylsulfinyl)-2-(2-methoxyethylthio) benzene in the organic phase.}, language = {en} } @article{BrietzkeMicklerKellingetal.2012, author = {Brietzke, Thomas Martin and Mickler, Wulfhard and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {41}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c2dt11805j}, pages = {2788 -- 2797}, year = {2012}, abstract = {We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono-and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF6)(2), [1] (PF6)(2)-[5](PF6)(2), and [{Ru(L-L)(2)}(2)(mu-tape)](PF6)(4), [6](PF6)(4)-[10](PF6)(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4' 5,5'-tetramethyl-2,2'- bipyridine)}, respectively, were synthesized. The X-ray structures of tape center dot 2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF6)(2)center dot 0.5CH(3)CN center dot 0.5toluene, [Ru(dmbpy)(2)(tape)] (PF6)(2)center dot 2toluene and [Ru(dtbbpy)(2)(tape)](PF6)(2) center dot 3acetone center dot 0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(II) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido [3,2-a:2',3'-c:3 '',2''-h:2''',3'''-j] phenazin (tpphz) species.}, language = {en} } @article{TraegerKlamrothKellingetal.2012, author = {Tr{\"a}ger, Juliane and Klamroth, Tillmann and Kelling, Alexandra and Lubahn, Susanne and Cleve, Ernst and Mickler, Wulfhard and Heydenreich, Matthias and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Complexation of Palladium(II) with unsaturated Dithioethers a systematic development of highly selective ligands for solvent extraction}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201101406}, pages = {2341 -- 2352}, year = {2012}, abstract = {There is a demand for new and robust PdII extractants due to growing recycling rates. Chelating dithioethers are promising substances for solvent extraction as they form stable square-planar complexes with PdII. We have modified unsaturated dithioethers, which are known to coordinate PdII, and adapted them to the requirements of industrial practice. The ligands are analogues of 1,2-dithioethene with varying electron-withdrawing backbones and polar end-groups. The crystal structures of several ligands and their palladium complexes were determined as well as their electro- and photochemical properties, complex stability and behaviour in solution. Solvent extraction experiments showed the superiority of some of our ligands over conventionally used extractants in terms of their very fast reaction rates. With highly selective 1,2-bis(2-methoxyethylthio)benzene (4) it is possible to extract PdII from a highly acidic medium in the presence of other base and palladium-group metals.}, language = {en} } @article{HahnHoldt2012, author = {Hahn, Simone and Holdt, Hans-J{\"u}rgen}, title = {Extraction of hexachloroplatinate from hydrochloric acid solutions with phosphorylated hexane-1,6-diyl polymers}, series = {Reactive \& functional polymers}, volume = {72}, journal = {Reactive \& functional polymers}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1381-5148}, doi = {10.1016/j.reactfunctpolym.2012.08.004}, pages = {878 -- 888}, year = {2012}, abstract = {A series of diols (diethylene glycol, triethylene glycol, butane-1,4-diol and hexane-1,6-diol) were immobilized onto Merrifield resin and subsequently phosphorylated with dialkyl chlorophosphate (alkyl = Me, Et, Bu). The resins bearing hexane-1,6-diyl groups exhibited very good extraction abilities in regard to precious metal chloro complexes like platinum(IV), palladium(II) and rhodium(III). In batch experiments, more than 98\% of Pt(IV) is extracted even when the metal and the hydrochloric acid concentration is enhanced significantly. Elution can be achieved with a solution of 0.5 mol L-1 thiourea in 0.1 mol L-1 hydrochloric acid. In the presence of other noble metals, platinum(IV) is preferentially bound. The extraction yield decreases in slightly acidic solution in the following order: Pt(IV)approximate to Pd(II)>Rh(III) and changes with increasing hydrochloric acid concentration to Pt(IV)>Pd(II)>> Rh(III). At different ratios of metal and acid, the temperature has nearly no influence on the platinum extraction. On slightly acidic media, the extraction of rhodium decreases by 30\% when the temperature is increased from 10 degrees C to 40 degrees C. When the acid and metal concentration is enhanced, the palladium extraction decreases by 7-9\%, depending on the resin.}, language = {en} }