@misc{DolezalovaKubatovaKubatetal.2019, author = {Dolezalova, Barbora and Kubatova, Brankica and Kubat, Jiri and Hamann, Wolf-Rainer}, title = {The Quasi-WR Star HD 45166 Revisited}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {197 -- 200}, year = {2019}, abstract = {We studied the wind of the quasi Wolf-Rayet (qWR) star HD 45166. As a first step we modeled the observed UV spectra of this star by means of the state-of-the-art Potsdam Wolf-Rayet (PoWR) atmosphere code. We inferred the wind parameters and compared them with previous findings.}, language = {en} } @article{HamannGraefenerLiermann2006, author = {Hamann, Wolf-Rainer and Graefener, G. and Liermann, A.}, title = {The galactic WN stars - Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {457}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {3}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361:20065052}, pages = {1015 -- 1031}, year = {2006}, abstract = {Context. Very massive stars pass through the Wolf-Rayet (WR) stage before they finally explode. Details of their evolution have not yet been safely established, and their physics are not well understood. Their spectral analysis requires adequate model atmospheres, which have been developed step by step during the past decades and account in their recent version for line blanketing by the millions of lines from iron and iron-group elements. However, only very few WN stars have been re-analyzed by means of line-blanketed models yet. Aims. The quantitative spectral analysis of a large sample of Galactic WN stars with the most advanced generation of model atmospheres should provide an empirical basis for various studies about the origin, evolution, and physics of the Wolf-Rayet stars and their powerful winds. Methods. We analyze a large sample of Galactic WN stars by means of the Potsdam Wolf-Rayet (PoWR) model atmospheres, which account for iron line blanketing and clumping. The results are compared with a synthetic population, generated from the Geneva tracks for massive star evolution. Results. We obtain a homogeneous set of stellar and atmospheric parameters for the GalacticWN stars, partly revising earlier results. Conclusions. Comparing the results of our spectral analyses of the Galactic WN stars with the predictions of the Geneva evolutionary calculations, we conclude that there is rough qualitative agreement. However, the quantitative discrepancies are still severe, and there is no preference for the tracks that account for the effects of rotation. It seems that the evolution of massive stars is still not satisfactorily understood.}, language = {en} } @article{GraefenerHamann2005, author = {Gr{\"a}fener, G{\"o}tz and Hamann, Wolf-Rainer}, title = {Hydrodynamic model atmospheres for WR stars : self-consistent modeling of a WC star wind}, issn = {0004-6361}, year = {2005}, abstract = {We present the first non-LTE atmosphere models for WRstars that incorporate a self-consistent solution of the hydrodynamic equations. The models take iron-group line-blanketing and clumping into account, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WCstar (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called "Hot Iron Bump" opacities (Fe IX- XVI). The acceleration of the outer wind regions is due to iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the "Iron Bump" opacities are responsible for an intense heating of deep atmospheric layers. We find that the observed narrow O VI emission lines in the optical spectra of WC stars originate from this region. From their dependence on the clumping factor we gain important information about the location where the density inhomogeneities in WR-winds start to develop}, language = {en} } @article{EvansSmarttLeeetal.2005, author = {Evans, C. J. and Smartt, S. J. and Lee, J. K. and Lennon, D. J. and Kaufer, A. and Dufton, P. L. and Trundle, C. and Herrero, A. and Simon D{\´i}az, Sergio and de Koter, A. and Hamann, Wolf-Rainer and Hendry, M. A. and Hunter, I. and Irwin, M. J. and Korn, A. J. and Kudritzki, R. P. and Langer, Norbert and Mokiem, M. R. and Najarro, F. and Pauldrach, A. W. A. and Przybilla, Norbert and Puls, J. and Ryans, R. S. I. and Urbaneja, M. A. and Venn, K. A. and Villamariz, M. R.}, title = {The VLT-FLAMES survey of massive stars : Observations in the Galactic clusters NGC3293, NGC4755 and NGC6611}, year = {2005}, abstract = {We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared}, language = {en} } @article{PenaPeimbertHamannetal.2004, author = {Pena, M and Peimbert, A. and Hamann, Wolf-Rainer and Ruiz, M. T. and Peimbert, M.}, title = {The extraordinary planetary nebula N66 in the LMC}, isbn = {3-12-283174-0}, year = {2004}, abstract = {Morphology of the planetary nebula LMC-N66 (ionized by a [WN] star) indicates that the nebula is a multipolar object with a very narrow waist. It shows several jets, knots and filaments in opposite directions from the central star. A couple of twisted long filaments could be interpreted as due to point-symmetric type ejection. If such is the case, the progenitor would be a binary precessing system. High resolution spectroscopy shows that most of the material is approaching or receding from the star. However the line profiles are very complex, showing several components at different velocities. Our high resolution spectroscopic data show that the different structures (knots, filaments, ...) present different radial velocities spreading from 240 to more than 400 km/s. The system velocity is 300 km/s. There are high velocity knots located to the north of the central star, moving at more than 100 km/s relative to the system velocity.}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Grids of model spectra for WN stars, ready for use}, issn = {0004-6361}, year = {2004}, abstract = {Grids of model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN subclass) are presented. The calculations account for the expansion of the atmosphere, non-LTE, clumping, and line blanketing from iron-group elements. Observed spectra of single Galactic WN stars can in general be reproduced consistently by this generation of models. The parameters of the presented model grids cover the whole relevant range of stellar temperatures and mass-loss rates. We point out that there is a degeneracy of parameters for very thick winds; their spectra tend to depend only on the ratio \$L/{dot M}^{4/3}\$. Abundances of the calculated grids are for Galactic WN stars without hydrogen and with 20\% hydrogen (by mass), respectively. Model spectra and fluxes are available via internet (http://www.astro.physik.uni- potsdam.de/PoWR.html).}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {A temperature correction method for expanding atmospheres}, year = {2004}, language = {en} } @article{StastinskaGraefenerPenaetal.2004, author = {Stastinska, G. and Gr{\"a}fener, G{\"o}tz and Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Szczerba, Ryszard}, title = {Comprehensive modelling of the planetary nebula LMC-SMP 61 and its [WC]-type central star}, issn = {0004-6361}, year = {2004}, abstract = {We present a comprehensive study of the Magellanic Cloud planetary nebula SMP 61 and of its nucleus, a Wolf- Rayet type star classified [WC 5-6]. The observational material consists of HST STIS spectroscopy and imaging, together with optical and UV spectroscopic data collected from the literature and infrared fluxes measured by IRAS. We have performed a detailed spectral analysis of the central star, using the Potsdam code for expanding atmospheres in non-LTE. For the central star we determine the following parameters: L-star = 10(3.96) L-., R-star = 0.42 R-., T-star = 87.5 kK, (M) over dot = 10(-6.12) M-. yr(-1), v(infinity) = 1400 km s(-1), and a clumping factor of D = 4. The elemental abundances by mass are X-He = 0.45, X-C = 0.52, X-N < 5 x 10(-5), X-O = 0.03, and X-Fe < 1 x 10(-4). The fluxes from the model stellar atmosphere were used to compute photoionization models of the nebula. All the available observations, within their error bars, were used to constrain these models. We find that the ionizing fluxes predicted by the stellar model are consistent with the fluxes needed by the photoionization model to reproduce the nebular emission, within the error margins. However, there are indications that the stellar model overestimates the number and hardness of Lyman continuum photons. The photoionization models imply a clumped density structure of the nebular material. The observed C III] lambda1909/C II lambda4267 line ratio implies the existence of carbon-rich clumps in the nebula. Such clumps are likely produced by stellar wind ejecta, possibly mixed with the nebular material. We discuss our results with regard to the stellar and nebular post-AGB evolution. The observed Fe-deficiency for the central star indicates that the material which is now visible on the stellar surface has been exposed to s-process nucleosynthesis during previous thermal pulses. The absence of nitrogen allows us to set an upper limit to the remaining H-envelope mass after a possible AGB final thermal pulse. Finally, we infer from the total amount of carbon detected in the nebula that the strong [WC] mass- loss may have been active only for a limited period during the post-AGB evolution}, language = {en} } @article{PenaHamannRuizetal.2004, author = {Pena, M. and Hamann, Wolf-Rainer and Ruiz, M. T. and Peimbert, A. and Peimbert, M.}, title = {A high resolution spectroscopic study of the extraordinary planetary nebula LMC-N66}, year = {2004}, abstract = {The planetary nebula N66 in the Large Magellanic Cloud is an extraordinary object, as it is the only confirmed PN where the central star is a Wolf-Rayet star of the nitrogen sequence, i.e. of type [WN]. Moreover, the star showed a dramatic brightness outburst in 1993-1994. In a previous paper (Hamann et al. 2003) we analyzed the changing stellar spectra and found evidence that the central star is most likely a binary system where a white dwarf presently accretes matter from a non-degenerate companion at a high rate. Thus the object is a candidate for a future type Ia supernova in our cosmic neighborhood. In the present paper we analyze the morphology and kinematics of the nebula, using images and high-resolution spectra obtained with the Hubble Space Telescope (HST) and the Very Large Telescope (ESO-VLT). The object presents a complex multipolar structure, dominated by very bright lobes located at both sides of the central star and separated by a narrow waist. In addition there is a pair of very extended and twisted loops, also pointing in opposite directions; their symmetry axis and collimation angle differs from those of the bright lobes. High resolution spectroscopy reveals two main velocity components, "approaching" material at an average heliocentric radial velocity Of V-rad = 248 30 km s(-1) and similarly bright "receding" material at V-rad = 331 +/- 25 km s(-1). A systemic velocity of about 300 km s(-1) is derived. Opposite lobes and loops possess opposite velocities. Furthermore there are knots and filaments of complex structure and kinematics. Close to the central star, nebular gas is found, receding at very high velocity (125 km s(-1) relative to the system). The morphology and kinematics of LMC-N66 can be explained as the result of episodic bipolar ejections with changing axis. The bipolar structures could have been produced by collimated streams ejected from a precessing central source. We suggest that the precession could have been produced by an external torque, possibly due to a binary companion. Young, fast-moving nebular knots close to the star appear slightly He- and N-richer than the main body of the nebula, but are still hydrogen-rich in contrast to the helium-dominated atmosphere of the [WN]- type central star. In the binary scenario, this nebular matter must have been accreted from the non-degenerate companion and re-ejected before it was fully burnt}, language = {en} } @article{Hamann2003, author = {Hamann, Wolf-Rainer}, title = {Basic ali in moving atmospheres}, isbn = {1-5838-1131-1}, year = {2003}, abstract = {The non-LTE radiative transfer problem requires the consistent solution of two sets of equations: the radiative transfer equations, which couple the spatial points, and the equations of the statistical equilibrium, which couple the frequencies. The "Accelerated Lambda Iteration" (ALI) method allows for an iterative scheme, in which both sets of equations are solved in turn. For moving atmospheres the radiative transfer is preferably formulated in the co-moving frame-of-reference, which leads to a partial differential equation. "Classical" numerical solution methods are based on differencing schemes. For better numerical stability, we prefer "short characteristics" integration methods. Iron line blanketing is accounted for by means of the "superlevel" concept. In contrast to static atmospheres, the frequencies can not be re-ordered in the moving case because of the frequency coupling from Doppler shifts. One of our future aims is the coupling of elaborated radiative transfer calculations with the hydrodynamical equations in order to understand the driving of strong stellar winds, especially from Wolf-Rayet stars.}, language = {de} }