@article{VanHoutTachmazidouBackmanetal.2020, author = {Van Hout, Cristopher V. and Tachmazidou, Ioanna and Backman, Joshua D. and Hoffman, Joshua D. and Liu, Daren and Pandey, Ashutosh K. and Gonzaga-Jauregui, Claudia and Khalid, Shareef and Ye, Bin and Banerjee, Nilanjana and Li, Alexander H. and O'Dushlaine, Colm and Marcketta, Anthony and Staples, Jeffrey and Schurmann, Claudia and Hawes, Alicia and Maxwell, Evan and Barnard, Leland and Lopez, Alexander and Penn, John and Habegger, Lukas and Blumenfeld, Andrew L. and Bai, Xiaodong and O'Keeffe, Sean and Yadav, Ashish and Praveen, Kavita and Jones, Marcus and Salerno, William J. and Chung, Wendy K. and Surakka, Ida and Willer, Cristen J. and Hveem, Kristian and Leader, Joseph B. and Carey, David J. and Ledbetter, David H. and Cardon, Lon and Yancopoulos, George D. and Economides, Aris and Coppola, Giovanni and Shuldiner, Alan R. and Balasubramanian, Suganthi and Cantor, Michael and Nelson, Matthew R. and Whittaker, John and Reid, Jeffrey G. and Marchini, Jonathan and Overton, John D. and Scott, Robert A. and Abecasis, Goncalo R. and Yerges-Armstrong, Laura M. and Baras, Aris}, title = {Exome sequencing and characterization of 49,960 individuals in the UK Biobank}, series = {Nature : the international weekly journal of science}, volume = {586}, journal = {Nature : the international weekly journal of science}, number = {7831}, publisher = {Macmillan Publishers Limited}, address = {London}, organization = {Regeneron Genetics Ctr}, issn = {0028-0836}, doi = {10.1038/s41586-020-2853-0}, pages = {749 -- 756}, year = {2020}, abstract = {The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world(1). Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6\% have a frequency of less than 1\%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97\%) had at least one carrier with a LOF variant, and most genes (more than 69\%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, includingPIEZO1on varicose veins,COL6A1on corneal resistance,MEPEon bone density, andIQGAP2andGMPRon blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2\% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenicBRCA1andBRCA2variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Exome sequences from the first 49,960 participants in the UK Biobank highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.}, language = {en} } @article{GanchevaOuniJeleniketal.2019, author = {Gancheva, Sofiya and Ouni, Meriem and Jelenik, Tomas and Koliaki, Chrysi and Szendroedi, Julia and Toledo, Frederico G. S. and Markgraf, Daniel Frank and Pesta, Dominik H. and Mastrototaro, Lucia and De Filippo, Elisabetta and Herder, Christian and J{\"a}hnert, Markus and Weiss, J{\"u}rgen and Strassburger, Klaus and Schlensak, Matthias and Sch{\"u}rmann, Annette and Roden, Michael}, title = {Dynamic changes of muscle insulin sensitivity after metabolic surgery}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12081-0}, pages = {13}, year = {2019}, abstract = {The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity.}, language = {en} } @article{GrajaGarciaCarrizoJanketal.2018, author = {Graja, Antonia and Garcia-Carrizo, Francisco and Jank, Anne-Marie and Gohlke, Sabrina and Ambrosi, Thomas H. and Jonas, Wenke and Ussar, Siegfried and Kern, Matthias and Sch{\"u}rmann, Annette and Aleksandrova, Krasimira and Bluher, Matthias and Schulz, Tim Julius}, title = {Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism}, series = {Aging Cell}, volume = {17}, journal = {Aging Cell}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1474-9718}, doi = {10.1111/acel.12810}, pages = {13}, year = {2018}, abstract = {Remodeling of the extracellular matrix is a key component of the metabolic adaptations of adipose tissue in response to dietary and physiological challenges. Disruption of its integrity is a well-known aspect of adipose tissue dysfunction, for instance, during aging and obesity. Adipocyte regeneration from a tissue-resident pool of mesenchymal stem cells is part of normal tissue homeostasis. Among the pathophysiological consequences of adipogenic stem cell aging, characteristic changes in the secretory phenotype, which includes matrix-modifying proteins, have been described. Here, we show that the expression of the matricellular protein periostin, a component of the extracellular matrix produced and secreted by adipose tissue-resident interstitial cells, is markedly decreased in aged brown and white adipose tissue depots. Using a mouse model, we demonstrate that the adaptation of adipose tissue to adrenergic stimulation and high-fat diet feeding is impaired in animals with systemic ablation of the gene encoding for periostin. Our data suggest that loss of periostin attenuates lipid metabolism in adipose tissue, thus recapitulating one aspect of age-related metabolic dysfunction. In human white adipose tissue, periostin expression showed an unexpected positive correlation with age of study participants. This correlation, however, was no longer evident after adjusting for BMI or plasma lipid and liver function biomarkers. These findings taken together suggest that age-related alterations of the adipose tissue extracellular matrix may contribute to the development of metabolic disease by negatively affecting nutrient homeostasis.}, language = {en} } @article{SchraderSchuermannDruskaetal.1997, author = {Schrader, Sigurd and Sch{\"u}rmann, H. and Druska, P. and Teppner, Randolf and Prescher, Dietrich}, title = {Ultraviolet photoelectron spectroscopy of conjugated organic model compounds}, year = {1997}, language = {en} } @article{SchuermannKochVollmeretal.2000, author = {Sch{\"u}rmann, H. and Koch, Norbert and Vollmer, A. and Schrader, Sigurd and Neumann, M.}, title = {Angle resolved ultraviolet photoelectron spectroscopy of oriented sexiphenyl layers}, year = {2000}, language = {en} } @article{SchraderSchuermannKochetal.1999, author = {Schrader, Sigurd and Sch{\"u}rmann, H. and Koch, Norbert and Prescher, Dietrich}, title = {Electronic structure of new donor acceptor substituted chromophores}, year = {1999}, language = {en} } @article{SchuermannKochVollmeretal.1999, author = {Sch{\"u}rmann, H. and Koch, Norbert and Vollmer, A. and Schrader, Sigurd and Neumann, M.}, title = {Angle resolved ultraviolet photoelectron spectroscopy (ARUPS) of oriented sexiphenyl layers}, year = {1999}, language = {en} } @article{SchuermannKochImperiaetal.1999, author = {Sch{\"u}rmann, H. and Koch, Norbert and Imperia, Paolo and Schrader, Sigurd and Jandke, M. and Strohriegl, P. and Schulz, Burkhard and Leising, G. and Brehmer, Ludwig}, title = {Ultraviolet photoelectron spectroscopic study of heterocyclic model compounds for electroluminescent devices}, year = {1999}, language = {en} } @article{McNultyGoupilAlbaradoetal.2020, author = {McNulty, Margaret A. and Goupil, Brad A. and Albarado, Diana C. and Casta{\~n}o-Martinez, Teresa and Ambrosi, Thomas H. and Puh, Spela and Schulz, Tim Julius and Sch{\"u}rmann, Annette and Morrison, Christopher D. and Laeger, Thomas}, title = {FGF21, not GCN2, influences bone morphology due to dietary protein restrictions}, series = {Bone Reports}, volume = {12}, journal = {Bone Reports}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-1872}, doi = {10.1016/j.bonr.2019.100241}, pages = {1 -- 10}, year = {2020}, abstract = {Background: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal\%; CON) or low protein (4 kcal\%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal\%; CON), low levels (4 kcal\%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal\%) that provided methionine at control (0.86\%; CON-MR) or low levels (0.17\%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (mu CT) for changes in trabecular and cortical architecture and mass. Results: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.}, language = {en} } @misc{McNultyGoupilAlbaradoetal.2020, author = {McNulty, Margaret A. and Goupil, Brad A. and Albarado, Diana C. and Casta{\~n}o-Martinez, Teresa and Ambrosi, Thomas H. and Puh, Spela and Schulz, Tim Julius and Sch{\"u}rmann, Annette and Morrison, Christopher D. and Laeger, Thomas}, title = {FGF21, not GCN2, influences bone morphology due to dietary protein restrictions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51629}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516297}, pages = {12}, year = {2020}, abstract = {Background: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal\%; CON) or low protein (4 kcal\%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal\%; CON), low levels (4 kcal\%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal\%) that provided methionine at control (0.86\%; CON-MR) or low levels (0.17\%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (mu CT) for changes in trabecular and cortical architecture and mass. Results: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.}, language = {en} }