@misc{AmbarlıMenguellueoğluFickeletal.2018, author = {Ambarl{\i}, H{\"u}seyin and Meng{\"u}ll{\"u}oğlu, Deniz and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {Population genetics of the main population of brown bears in southwest Asia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {937}, issn = {1866-8372}, doi = {10.25932/publishup-45912}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459124}, pages = {20}, year = {2018}, abstract = {Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on populations from Europe and North America, although the largest distribution area of brown bears is in Asia. In this study, we reveal population genetic parameters for the brown bear population inhabiting the Grand Ka{\c{c}}kar Mountains (GKM) in the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing trees worked better for genotyping than those from power poles, regardless of the year collected. Genotyping also revealed that bears moved between habitat patches, despite ongoing massive habitat alterations and the creation of large water reservoirs. This population has the potential to serve as a genetic reserve for future reintroductions in the Middle East. Due to the importance of the GKM population for on-going and future conservation actions, the impacts of habitat alterations in the region ought to be minimized; e.g., by establishing green bridges or corridors over reservoirs and major roads to maintain habitat connectivity and gene flow among populations in the Lesser Caucasus.}, language = {en} } @article{AmbarliMenguellueoğluFickeletal.2018, author = {Ambarli, H{\"u}seyin and Meng{\"u}ll{\"u}oğlu, Deniz and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {Hotel AMANO Grand Central of brown bears in southwest Asia}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.5660}, pages = {18}, year = {2018}, abstract = {Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on populations from Europe and North America, although the largest distribution area of brown bears is in Asia. In this study, we reveal population genetic parameters for the brown bear population inhabiting the Grand Kackar Mountains (GKM) in the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing trees worked better for genotyping than those from power poles, regardless of the year collected. Genotyping also revealed that bears moved between habitat patches, despite ongoing massive habitat alterations and the creation of large water reservoirs. This population has the potential to serve as a genetic reserve for future reintroduction in the Middle East. Due to the importance of the GKM population for on-going and future conservation actions, the impacts of habitat alterations in the region ought to be minimized; e.g., by establishing green bridges or corridors over reservoirs and major roads to maintain habitat connectivity and gene flow among populations in the Lesser Caucasus.}, language = {en} } @article{HofmanHaywardHeimetal.2019, author = {Hofman, Maarten P. G. and Hayward, M. W. and Heim, M. and Marchand, P. and Rolandsen, C. M. and Mattisson, Jenny and Urbano, F. and Heurich, M. and Mysterud, A. and Melzheimer, J. and Morellet, N. and Voigt, Ulrich and Allen, B. L. and Gehr, Benedikt and Rouco Zufiaurre, Carlos and Ullmann, Wiebke and Holand, O. and Jorgensen, n H. and Steinheim, G. and Cagnacci, F. and Kroeschel, M. and Kaczensky, P. and Buuveibaatar, B. and Payne, J. C. and Palmegiani, I and Jerina, K. and Kjellander, P. and Johansson, O. and LaPoint, S. and Bayrakcismith, R. and Linnell, J. D. C. and Zaccaroni, M. and Jorge, M. L. S. and Oshima, J. E. F. and Songhurst, A. and Fischer, C. and Mc Bride, R. T. and Thompson, J. J. and Streif, S. and Sandfort, R. and Bonenfant, Christophe and Drouilly, M. and Klapproth, M. and Zinner, Dietmar and Yarnell, Richard and Stronza, A. and Wilmott, L. and Meisingset, E. and Thaker, Maria and Vanak, A. T. and Nicoloso, S. and Graeber, R. and Said, S. and Boudreau, M. R. and Devlin, A. and Hoogesteijn, R. and May-Junior, J. A. and Nifong, J. C. and Odden, J. and Quigley, H. B. and Tortato, F. and Parker, D. M. and Caso, A. and Perrine, J. and Tellaeche, C. and Zieba, F. and Zwijacz-Kozica, T. and Appel, C. L. and Axsom, I and Bean, W. T. and Cristescu, B. and Periquet, S. and Teichman, K. J. and Karpanty, S. and Licoppe, A. and Menges, V and Black, K. and Scheppers, Thomas L. and Schai-Braun, S. C. and Azevedo, F. C. and Lemos, F. G. and Payne, A. and Swanepoel, L. H. and Weckworth, B. and Berger, A. and Bertassoni, Alessandra and McCulloch, G. and Sustr, P. and Athreya, V and Bockmuhl, D. and Casaer, J. and Ekori, A. and Melovski, D. and Richard-Hansen, C. and van de Vyver, D. and Reyna-Hurtado, R. and Robardet, E. and Selva, N. and Sergiel, A. and Farhadinia, M. S. and Sunde, P. and Portas, R. and Ambarli, H{\"u}seyin and Berzins, R. and Kappeler, P. M. and Mann, G. K. and Pyritz, L. and Bissett, C. and Grant, T. and Steinmetz, R. and Swedell, Larissa and Welch, R. J. and Armenteras, D. and Bidder, O. R. and Gonzalez, T. M. and Rosenblatt, A. and Kachel, S. and Balkenhol, N.}, title = {Right on track?}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216223}, pages = {26}, year = {2019}, abstract = {Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48\% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.}, language = {en} }