@misc{GriscomBuschCookPattonetal.2020, author = {Griscom, Bronson W. and Busch, Jonah and Cook-Patton, Susan C. and Ellis, Peter W. and Funk, Jason and Leavitt, Sara M. and Lomax, Guy and Turner, Will R. and Chapman, Melissa and Streck, Charlotte}, title = {National mitigation potential from natural climate solutions in the tropics}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {1794}, issn = {1867-5808}, doi = {10.25932/publishup-51369}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513692}, pages = {13}, year = {2020}, abstract = {Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2 degrees C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO(2)e yr(-1) at less than 100 US\$ per Mg CO(2)e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.}, language = {en} } @article{RoeStreckBeachetal.2021, author = {Roe, Stephanie and Streck, Charlotte and Beach, Robert and Busch, Jonah and Chapman, Melissa and Daioglou, Vassilis and Deppermann, Andre and Doelman, Jonathan and Emmet-Booth, Jeremy and Engelmann, Jens and Fricko, Oliver and Frischmann, Chad and Funk, Jason and Grassi, Giacomo and Griscom, Bronson and Havlik, Petr and Hanssen, Steef and Humpen{\"o}der, Florian and Landholm, David and Lomax, Guy and Lehmann, Johannes and Mesnildrey, Leah and Nabuurs, Gert-Jan and Popp, Alexander and Rivard, Charlotte and Sanderman, Jonathan and Sohngen, Brent and Smith, Pete and Stehfest, Elke and Woolf, Dominic and Lawrence, Deborah}, title = {Land-based measures to mitigate climate change}, series = {Global change biology}, volume = {27}, journal = {Global change biology}, number = {23}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1365-2486}, doi = {10.1111/gcb.15873}, pages = {6025 -- 6058}, year = {2021}, abstract = {Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to \$100/tCO2eq) land-based mitigation is 8-13.8 GtCO2eq yr-1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40\% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50\% from forests and other ecosystems, 35\% from agriculture, and 15\% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr-1) and the top 15 countries account for about 60\% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80\%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.}, language = {en} } @article{GriscomBuschCookPattonetal.2020, author = {Griscom, Bronson W. and Busch, Jonah and Cook-Patton, Susan C. and Ellis, Peter W. and Funk, Jason and Leavitt, Sara M. and Lomax, Guy and Turner, Will R. and Chapman, Melissa and Streck, Charlotte}, title = {National mitigation potential from natural climate solutions in the tropics}, series = {Biological sciences}, volume = {375}, journal = {Biological sciences}, number = {1794}, publisher = {The Royal Society Publishing}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2019.0126}, pages = {1 -- 11}, year = {2020}, abstract = {Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2 degrees C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO(2)e yr(-1) at less than 100 US\$ per Mg CO(2)e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.}, language = {en} }