@article{FinkeWandtEbertetal.2020, author = {Finke, Hannah and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Guttenberger, Nikolaus and Glabonjat, Ronald A. and Stiboller, Michael and Francesconi, Kevin A. and Raber, Georg and Schwerdtle, Tanja}, title = {Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells}, volume = {12}, number = {7}, publisher = {Oxford University}, address = {Cambridge}, doi = {10.1039/d0mt00073f}, pages = {1159 -- 1170}, year = {2020}, abstract = {Arsenolipids include a wide range of organic arsenic species that occur naturally in seafood and thereby contribute to human arsenic exposure. Recently arsenic-containing phosphatidylcholines (AsPCs) were identified in caviar, fish, and algae. In this first toxicological assessment of AsPCs, we investigated the stability of both the oxo- and thioxo-form of an AsPC under experimental conditions, and analyzed cell viability, indicators of genotoxicity and biotransformation in human liver cancer cells (HepG2). Precise toxicity data could not be obtained owing to the low solubility in the cell culture medium of the thioxo-form, and the ease of hydrolysis of the oxo-form, and to a lesser degree the thioxo-form. Hydrolysis resulted amongst others in the respective constituent arsenic-containing fatty acid (AsFA). Incubation of the cells with oxo-AsPC resulted in a toxicity similar to that determined for the hydrolysis product oxo-AsFA alone, and there were no indices for genotoxicity. Furthermore, the oxo-AsPC was readily taken up by the cells resulting in high cellular arsenic concentrations (50 μM incubation: 1112 ± 146 μM As cellular), whereas the thioxo-AsPC was substantially less bioavailable (50 μM incubation: 293 ± 115 μM As cellular). Speciation analysis revealed biotransformation of the AsPCs to a series of AsFAs in the culture medium, and, in the case of the oxo-AsPC, to as yet unidentified arsenic species in cell pellets. The results reveal the difficulty of toxicity studies of AsPCs in vitro, indicate that their toxicity might be largely governed by their arsenic fatty acid content and suggest a multifaceted human metabolism of food derived complex arsenolipids.}, language = {en} } @article{XiongStibollerGlabonjatetal.2020, author = {Xiong, Chan and Stiboller, Michael and Glabonjat, Ronald A. and Rieger, Jaqueline and Paton, Lhiam and Francesconi, Kevin A.}, title = {Transport of arsenolipids to the milk of a nursing mother after consuming salmon fish}, series = {Journal of trace elements in medicine and biology}, volume = {61}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2020.126502}, pages = {6}, year = {2020}, abstract = {Objective: We address two questions relevant to infants' exposure to potentially toxic arsenolipids, namely, are the arsenolipids naturally present in fish transported intact to a mother's milk, and what is the efficiency of this transport. Methods: We investigated the transport of arsenolipids and other arsenic species present in fish to mother's milk by analyzing the milk of a single nursing mother at 15 sampling times over a 3-day period after she had consumed a meal of salmon. Total arsenic values were obtained by elemental mass spectrometry, and arsenic species were measured by HPLC coupled to both elemental and molecular mass spectrometry. Results: Total arsenic increased from background levels (0.1 mu g As kg(-1)) to a peak value of 1.72 lig As kg(-1) eight hours after the fish meal. The pattern for arsenolipids was similar to that of total arsenic, increasing from undetectable background levels (< 0.01 mu g As kg(-1)) to a peak after eight hours of 0.45 mu g As kg(-1). Most of the remaining total arsenic in the milk was accounted for by arsenobetaine. The major arsenolipids in the salmon were arsenic hydrocarbons (AsHCs; 55 \% of total arsenolipids), and these compounds were also the dominant arsenolipids in the milk where they contributed over 90 \% of the total arsenolipids. Conclusions: Our study has shown that ca 2-3 \% of arsenic hydrocarbons, natural constituents of fish, can be directly transferred unchanged to the milk of a nursing mother. In view of the potential neurotoxicity of AsHCs, the effects of these compounds on the brain developmental stage of infants need to be investigated.}, language = {en} }