@article{FiorentinoManganelliGiustietal.2013, author = {Fiorentino, V. and Manganelli, Giuseppe and Giusti, Folco and Tiedemann, Ralph and Ketmaier, Valerino}, title = {A question of time the land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation}, series = {Molecular ecology}, volume = {22}, journal = {Molecular ecology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.12107}, pages = {170 -- 186}, year = {2013}, abstract = {The lively debate about speciation currently focuses on the relative importance of factors driving population differentiation. While many studies are increasingly producing results on the importance of selection, little is known about the interaction between drift and selection. Moreover, there is still little knowledge on the spatial-temporal scales at which speciation occurs, that is, arrangement of habitat patches, abruptness of habitat transitions, climate and habitat changes interacting with selective forces. To investigate these questions, we quantified variation on a fine geographical scale analysing morphological (shell) and genetic data sets coupled with environmental data in the land snail Murella muralis, endemic to the Mediterranean island of Sicily. Analysis of a fragment of the mitochondrial DNA cytochrome oxidase I gene (COI) and eight nuclear microsatellite loci showed that genetic variation is highly structured at a very fine spatial scale by local palaeogeographical events and historical population dynamics. Molecular clock estimates, calibrated here specifically for Tyrrhenian land snails, provided a framework of palaeogeographical events responsible for the observed geographical variations and migration routes. Finally, we showed for the first time well-documented lines of evidence of selection in the past, which explains divergence of land snail shell shapes. We suggest that time and palaeogeographical history acted as constraints in the progress along the ecological speciation continuum. Our study shows that testing for correlation among palaeogeography, morphology and genetic data on a fine geographical scale provides information fundamental for a detailed understanding of ecological speciation processes.}, language = {en} } @article{KetmaierGiustiCaccone2006, author = {Ketmaier, Valerio and Giusti, Folco and Caccone, Adalgisa}, title = {Molecular phylogeny and historical biogeography of the land snail genus Solatopupa (Pulmonata) in the peri- Tyrrhenian area}, issn = {1055-7903}, doi = {10.1016/j.ympev.2005.12.008}, year = {2006}, abstract = {The land snail genus Solatopupa consists of six species and has a peri-Tyrrhenian distribution; most of the species have a very narrow range and all of them except one (Solatopupa cianensis, which inhabits porphyritic rocks) are strictly bound to calcareous substrates. One species (Solatopupa gidoni) is limited to Sardinia, Corsica, and Elba Island. Because the potential for dispersal of these snails is low, the insular range of this species has been traditionally related to the Oligocenic detachment of the Sardinia-Corsica microplate from the Iberian plate and its subsequent rotation towards the Italian peninsula. In this Study, we used sequences of three mitochondrial and one nuclear gene to reconstruct the evolutionary history of the genus. Our phylogenetic results are consistent with the genetic relationships found using allozymes, but contrast with the phylogenetic hypotheses based on karyology and morphology. Molecular clock estimates indicate that the main cladogenetic events in the genus occurred between the middle Miocene and the middle-late Pliocene. Patterns of phylogenetic relationships and geological considerations suggest that the cladogenesis of the genus can be explained by vicariant (tectonic) processes. Our datings do not support a causal relation between the split of S. guidoni from its continental sister taxon and the initial phases of the detachment of the Corsica-Sardinia microplate from the mainland. On the contrary, time estimates coincide with the very last phase of detachment of the microplate (from 5 to 3 Myrs ago). Overall, our molecular clock estimates are in good agreement with the latest geological views on the tectonic evolution of the peri-Tyrrhenian area.}, language = {en} }