@misc{PatheNeuschaeferRubeNeuschaeferRubePueschel2021, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul}, title = {Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1139}, issn = {1866-8372}, doi = {10.25932/publishup-50322}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503225}, pages = {15}, year = {2021}, abstract = {The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release.}, language = {en} } @misc{PueschelHespelingOppermannetal.1993, author = {P{\"u}schel, Gerhard Paul and Hespeling, Ursula and Oppermann, Martin and Dieter, Peter}, title = {Increase in prostanoid formation in rat liver macrophages (Kupffer cells) by human anaphylatoxin C3a}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16716}, year = {1993}, abstract = {Human anaphylatoxin C3a increases glycogenolysis in perfused rat liver. This action is inhibited by prostanoid synthesis inhibitors and prostanoid antagonists. Because prostanoids but not anaphylatoxin C3a can increase glycogenolysis in hepatocytes, it has been proposed that prostanoid formation in nonparenchymal cells represents an important step in the C3a-dependent increase in hepatic glycogenolysis. This study shows that (a) human anaphylatoxin C3a (0.1 to 10 mug/ml) dose-dependently increased prostaglandin D2, thromboxane B, and prostaglandin F2alpha formation in rat liver macrophages (Kupffer cells); (b) the C3a-mediated increase in prostanoid formation was maximal after 2 min and showed tachyphylaxis; and (c) the C3a-elicited prostanoid formation could be inhibited specifically by preincubation of C3a with carboxypeptidase B to remove the essential C-terminal arginine or by preincubation of C3a with Fab fragments of a neutralizing monoclonal antibody. These data support the hypothesis that the C3a-dependent activation of hepatic glycogenolysis is mediated by way of a C3a-induced prostanoid production in Kupffer cells.}, language = {en} } @misc{PueschelNathJungermann1987, author = {P{\"u}schel, Gerhard Paul and Nath, Annegret and Jungermann, Kurt}, title = {Increase of urate formation by stimulation of sympathetic hepatic nerves, circulating noradrenaline and glucagon inthe perfused rat liver}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16728}, year = {1987}, abstract = {In the isolated rat liver perfused in situ stimulation of the nerve bundles around the portal vein and the hepatic artery caused an increase of urate formation that was inhibited by the α1-blocker prazosine and the xanthine oxidase inhibitor allopurinol. Moreover, nerve stimulation increased glucose and lactate output and decreased perfusion flow. Infusion of noradrenaline had similar effects. Compared to nerve stimulation infusion of glucagon led to a less pronounced increase of urate formation and a twice as large increase in glucose output but a decrease in lactate release without affecting the flow rate. Insulin had no effect on any of the parameters studied.}, language = {en} } @misc{PueschelChrist1994, author = {P{\"u}schel, Gerhard Paul and Christ, Bruno}, title = {Inhibition by PGE₂ of glucagon-induced increase in phosphoenolpyruvate carboxykinase mRNA and acceleration of mRNA degradation in cultured rat hepatocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45792}, year = {1994}, abstract = {In cultured rat hepatocytes the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) is known to be induced by glucagon via an elevation of cAMP. Prostaglandin E₂ has been shown to antagonize the glucagon-activated cAMP formation, glycogen phosphorylase activity and glucose output in hepatocytes. It was the purpose of the current investigation to study the potential of PGE₂ to inhibit the glucagon-induced expression of PCK on the level of mRNA and enzyme activity. PCK mRNA and enzyme activity were increased by 0.1 nM glucagon to a maximum after 2 h and 4 h, respectively. This increase was completely inhibited if 10 μM PGE2 was added concomitantly with glucagon. This inhibition by PGE₂ of glucagon-induced PCK activity was abolished by pertussis toxin treatment. When added at the maximum of PCK mRNA at 2 h, PGE₂ accelerated the decay of mRNA and reduced enzyme activity. This effect was not reversed by pertussis toxin treatment. Since in liver PGE₂ is derived from Kupffer cells, which play a key role in the local inflammatory response, the present data imply that during inflammation PGE₂ may reduce the hepatic gluconeogenic capacity via a Gᵢ-linked signal chain.}, language = {en} } @misc{PueschelMiuraNeuschaeferRubeetal.1993, author = {P{\"u}schel, Gerhard Paul and Miura, Hisayuki and Neusch{\"a}fer-Rube, Frank and Jungermann, Kurt}, title = {Inhibition by the protein kinase C activator 4β-phorbol 12-myristate 13-acetate of the prostaglandin F₂α-mediated and noradrenaline-mediated but not glucagon-mediated activation of glycogenolysis in rat liver}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45889}, year = {1993}, abstract = {In perfused rat livers, infusion of prostaglandin F₂α (PGF₂α) or noradrenaline increased glucose and lactate output and reduced flow. Glucagon increased glucose output and decreased lactate output without influence on flow. Infusion of phorbol 13-myristate 14-acetate (PMA) for 20 min prior to these stimuli strongly inhibited the metabolic and hemodynamic effects of noradrenaline, reduced the metabolic actions of PGF₂α but did not alter the effects of glucagon. In isolated rat hepatocytes PGF₂α, noradrenaline and glucagon activated glycogen phosphorylase but only PGF₂α and noradrenaline increased intracellular inositol 1,4,5-1risphosphalc (InsP₃). The noradrenaline- or PGF₂α-elicited activation of glycogen phosphorylase and increase in InsP₃ were largely reduced after preincubation of the cells for 10 min with PMA, whereas the glucagon-mediated enzyme activation was not affected. In contra\t to PMA, the phorbol ester 4a-phorbol 13,14-didecanoate. which does not activate protein kinase C, did not attenuate the PGF₂α- and noradrenaline-elicited stimulation of glucose output, glycogen phosphorylase and InsP, formation. Stimulation of InsP₃ formation by AlF₄⁻, which activates phospholipase C independently of the receptor, was not attenuated by prior incubation with PMA. Plasma membranes purified from isolated hepatocytes had both a high-capacity, low-affinity and a low-capacity, high-affinity binding site for PGF₂α. The Kd of the high-capacity, low-affinity binding site was close to the concentration of PGF₂α that increased glycogen phosphorylase activity halfmaximally. Binding to the high-capacity, low-affinity binding site was enhanced by guanosine 5'- 0-(3-thio)triphosphate (GTP[S]). This high-capacity, low-affinity site might thus represent the receptor. The Bmax and Kd of the high-capacity site, as well as the enhancement by GTP[S] of PGF₂α binding to this site, remained unaffected by PMA pretreatment. It is concluded that, in hepatocytes, activation of protein kinase C by PMA interrupted the InsP₃-mediated signal pathway from PGF₂α via a PGF₂α receptor and phospholipase C to glycogen phosphorylase at a point distal of the receptor prior to phospholipase C.}, language = {en} } @misc{NeuschaeferRubePueschelJungermann1993, author = {Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul and Jungermann, Kurt}, title = {Characterization of prostaglandin-F₂α-binding sites on rat hepatocyte plasma membranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45863}, year = {1993}, abstract = {Prostaglandin (PG)F₂α has previously been shown to increase glucose output from perfused livers and isolated hepatocytes, where it stimulated glycogen phosphorylase via an inositol-trisphosphatedependent signal pathway. In this study, PGF₂α binding sites on hepatocyte plasma membranes, that might represent the putative receptor, were characterized. Binding studies could not be performed with intact hepatocytes, because PGF₂α accumulated within the cells even at 4°C. The intracellular accumulation was an order of magnitude higher than binding to plasma membranes. Purified hepatocyte plasma membranes had a high-affinity/low-capacity and a low-affinity/highcapacity binding'site for PGF₂α. The respective binding constants for the high-affinity site were Kd = 3 nM and Bmax = 6 fmol/mg membrane protein, and for the low-affinity site Kd = 426 nM and Bmax = 245 fmol/mg membrane protein. Specific PGF₂α binding to the low-affinity site, but not to the high-affinity site, could be enhanced most potently by GTP[γS] followed by GDP[ϐS] and GTP, but not by ATP[γS] or GMP. PGF₂α competed most potently with [³H]PGF₂α for specific binding to hepatocyte plasma membranes, followed by PGD₂ and PGE₂. Since the low-affinity PGF₂α-binding site had a Kd in the concentration range in which PG had previously been shown to be half-maximally active, and since this binding site showed a sensitivity to GTP, it is concluded that it might represent the receptor involved in the PGF₂α signal chain in hepatocytes. A biological function of the high-affinity site is currently not known.}, language = {en} } @misc{PueschelKirchnerSchroederetal.1993, author = {P{\"u}schel, Gerhard Paul and Kirchner, C. and Schr{\"o}der, A. and Jungermann, Kurt}, title = {Glycogenolytic and antiglycogenolytic prostaglandin E₂ actions in rat hepatocytes are mediated via different signalling pathways}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45853}, year = {1993}, abstract = {Prostaglandin E₂ has been reported both to stimulate glycogen-phosphorylase activity (glycogenolytic effect) and to inhibit the glucagon-stimulated glycogen-phosphorylase activity (antiglycogenolytic effect) in rat hepatocytes. It was the purpose of this study to resolve this apparent contradiction and to characterize the signalling pathways and receptor subtypes involved in the opposing prostaglandin E₂ actions. Prostaglandin E₂ (10 μM) increased glucose output, glycogen-phosphorylase activity and inositol trisphosphate formation in hepatocyte cell culture andor suspension. In the same systems, prostaglandin E₂ decreased the glucagon-stimulated (1 nM) glycogen-phosphorylase activity and cAMP formation. The signalling pathway leading to the glycogenolytic effect of PGE₂ was interrupted by incubation of the hepatocytes with 4P-phorbol 12-myristate 13-acetate (100 nM) for 10 min, while the antiglycogenolytic effect of prostaglandin E₂ was not attenuated. The signalling pathway leading to the antiglycogenolytic effect of prostaglandin E₂ was interrupted by an incubation of cultured hepatocytes with pertussis toxin (100 ng/ml) for 18 h, whereas the glycogenolytic effect of prostaglandin E₂ was enhanced. The EP₁/EP₃ prostaglandin-E₂-receptor-specific prostaglandin E₂ analogue Sulproston had a stronger glycogenolytic potency than the EP₃ prostaglandin-E₂-receptor-specific prostaglandin E₂ analogue Misoprostol. The antiglycogenolytic potency of both agonists was equal. It is concluded that the glycogenolytic and the antiglycogenolytic effects of prostaglandin E₂ are mediated via different signalling pathways in hepatocytes possibly involving EP₁ and EP₃ prostaglandin E₂ receptors, respectively.}, language = {en} } @misc{HespelingPueschelJungermannetal.1995, author = {Hespeling, Ursula and P{\"u}schel, Gerhard Paul and Jungermann, Kurt and G{\"o}tze, Otto and Zwirner, J{\"o}rg}, title = {Stimulation of glycogen phosphorylase in rat hepatocytes via prostanoid release from Kupffer cells by recombinant rat anaphylatoxin C5a but not by native human C5a in hepatocyte/Kupffer cell co-cultures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45909}, year = {1995}, abstract = {Human anaphylatoxin C3a had previously been shown to increase glycogenolysis in perfused rat liver and prostanoid formation in rat liver macrophages. Surprisingly, human C5a, which in other systems elicited stronger responses than C3a, did not increase glycogenolysis in perfused rat liver. Species incompatibilities within the experimental system had been supposed to be the reason. The current study supports this hypothesis: (1) In rat liver macrophages that had been maintained in primary culture for 72 h recombinant rat anaphylatoxin C5a in concentrations between 0.1 and 10 pg/ml increased the formation of thromboxane A₂, prostaglandin D₂, E₂ and F₂α6- to 12-fold over basal within 10 min. In contrast, human anaphylatoxin C5a did not increase prostanoid formation in rat Kupffer cells. (2) The increase in prostanoid formation by recombinant rat C5a was specific. It was inhibited by a neutralizing monoclonal antibody. (3) In co-cultures of rat hepatocytes and rat Kupffer cells but not in hepatocyte mono-cultures recombinant rat C5a increased glycogen phosphorylase activity 3-fold over basal. This effect was inhibited by incubation of the co-cultures with 500 μM acetylsalicyclic acid. Thus, C5a generated either locally in the liver or systemically e.g. in the course of sepsis, may increase hepatic glycogenolysis by a prostanoid-mediated intercellular communication between Kupffer cells and hepatocytes.}, language = {en} } @misc{NeuschaeferRubeDeVriesHaeneckeetal.1994, author = {Neusch{\"a}fer-Rube, Frank and DeVries, Christa and H{\"a}necke, Kristina and Jungermann, Kurt and P{\"u}schel, Gerhard Paul}, title = {Molecular cloning and expression of a prostaglandin E₂ receptor of the EP₃ϐ subtype from rat hepatocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45830}, year = {1994}, abstract = {Rat hepatocytes have previously been reported to possess prostaglandin E₂ receptors of the EP₃-type (EP₃-receptors) that inhibit glucagonstimulated glycogenolysis by decreasing cAMP. Here, the isolation of a functional EP₃ϐ receptor cDNA clone from a rat hepatocyte cDNA library is reported. This clone can be translated into a 362-amino-acid protein, that displays over 95\% homology to the EP₃ϐ receptor from mouse mastocytoma. The amino- and carboxy-terminal region of the protein are least conserved. Transiently transfected HEK 293 cells expressed a single binding site for PGE₂ with an apparent Kd of 15 nM. PGE₂ > PGF₂α > PGD₂ competed for [³H]PGE₂ binding sites as did the EP₃ receptor agonists M\&B 28767 = sulprostone > misoprostol but not the EP₁ receptor antagonist SC 19220. In stably transfected CHO cells M\&B 28767 > sulprostone = PGE₂ > misoprostol > PGF₂α inhibited the forskolin-elicited cAMP formation. Thus, the characteristics of the EP₃ϐ receptor of rat hepatocytes closely resemble those of the EP₃ϐ receptor of mouse mastocytoma.}, language = {en} } @misc{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {807}, issn = {1866-8372}, doi = {10.25932/publishup-44238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442384}, pages = {17}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @misc{NeuschaeferRubePatheNeuschaeferRubePueschel2022, author = {Neusch{\"a}fer-Rube, Frank and Pathe-Neusch{\"a}fer-Rube, Andrea and P{\"u}schel, Gerhard Paul}, title = {Discrimination of the Activity of Low-Affinity Wild-Type and High-Affinity Mutant Recombinant BoNT/B by a SIMA Cell-Based Reporter Release Assay}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55803}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558032}, pages = {1 -- 11}, year = {2022}, abstract = {Botulinum neurotoxin (BoNT) is used for the treatment of a number of ailments. The activity of the toxin that is isolated from bacterial cultures is frequently tested in the mouse lethality assay. Apart from the ethical concerns inherent to this assay, species-specific differences in the affinity for different BoNT serotypes give rise to activity results that differ from the activity in humans. Thus, BoNT/B is more active in mice than in humans. The current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-Gluc) was inhibited by clostridial and recombinant BoNT/A to the same extent, whereas both clostridial and recombinant BoNT/B inhibited the release to a lesser extent and only at much higher concentrations, reflecting the low activity of BoNT/B in humans. By contrast, the genetically modified BoNT/B-MY, which has increased affinity for human synaptotagmin, and the BoNT/B protein receptor inhibited luciferase release effectively and with an EC50 comparable to recombinant BoNT/A. This was due to an enhanced uptake into the reporter cells of BoNT/B-MY in comparison to the recombinant wild-type toxin. Thus, the SIMA-hPOMC1-26-Gluc cell assay is a versatile tool to determine the activity of different BoNT serotypes providing human-relevant dose-response data.}, language = {en} } @misc{MichaudSchjeideSchenkeSeegeretal.2022, author = {Michaud Schjeide, Brit-Maren and Schenke, Maren and Seeger, Bettina and P{\"u}schel, Gerhard Paul}, title = {Validation of a Novel Double Control Quantitative Copy Number PCR Method to Quantify Off-Target Transgene Integration after CRISPR-Induced DNA Modification}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56175}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561755}, pages = {1 -- 14}, year = {2022}, abstract = {In order to improve a recently established cell-based assay to assess the potency of botulinum neurotoxin, neuroblastoma-derived SiMa cells and induced pluripotent stem-cells (iPSC) were modified to incorporate the coding sequence of a reporter luciferase into a genetic safe harbor utilizing CRISPR/Cas9. A novel method, the double-control quantitative copy number PCR (dc-qcnPCR), was developed to detect off-target integrations of donor DNA. The donor DNA insertion success rate and targeted insertion success rate were analyzed in clones of each cell type. The dc-qcnPCR reliably quantified the copy number in both cell lines. The probability of incorrect donor DNA integration was significantly increased in SiMa cells in comparison to the iPSCs. This can possibly be explained by the lower bundled relative gene expression of a number of double-strand repair genes (BRCA1, DNA2, EXO1, MCPH1, MRE11, and RAD51) in SiMa clones than in iPSC clones. The dc-qcnPCR offers an efficient and cost-effective method to detect off-target CRISPR/Cas9-induced donor DNA integrations.}, language = {en} } @misc{PueschelKlauderHenkelOberlaender, author = {P{\"u}schel, Gerhard Paul and Klauder, Julia and Henkel-Oberl{\"a}nder, Janin}, title = {Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1279}, issn = {1866-8372}, doi = {10.25932/publishup-57010}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570106}, pages = {1 -- 30}, abstract = {Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.}, language = {en} } @misc{HenkelAlfineSainetal.2018, author = {Henkel, Janin and Alfine, Eugenia and Sa{\´i}n, Juliana and J{\"o}hrens, Korinna and Weber, Daniela and Castro, Jos{\´e} Pedro and K{\"o}nig, Jeannette and Stuhlmann, Christin and Vahrenbrink, Madita and Jonas, Wenke and Kleinridders, Andr{\´e} and P{\"u}schel, Gerhard Paul}, title = {Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419773}, pages = {17}, year = {2018}, abstract = {While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.}, language = {en} } @misc{WatanabePueschelGardemannetal.1994, author = {Watanabe, Yuji and P{\"u}schel, Gerhard Paul and Gardemann, Andreas and Jungermann, Kurt}, title = {Presinusoidal and proximal intrasinusoidal confluence of hepatic artery and portal vein in rat liver : functional evidence by orthograde and retrograde bivascular perfusion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16702}, year = {1994}, abstract = {The site of confluence of the artery and the portal vein in the liver still appears to be controversial. Anatomical studies suggested a presinusoidal or an intrasinusoidal confluence in the first, second or even final third of the sinusoids. The objective of this investigation was to study the problem with functional biochemical techniques. Rat livers were perfused through the hepatic artery and simultaneously either in the orthograde direction from the portal vein to the hepatic vein or in the retrograde direction from the hepatic vein to the portal vein. Arterial how was linearly dependent on arterial pressure between 70 cm H2O and 120 cm H2O at a constant portal or hepatovenous pressure of 18 cm H2O. An arterial pressure of 100 cm H2O was required for the maintenance of a homogeneous orthograde perfusion of the whole parenchyma and of a physiologic ratio of arterial to portal how of about 1:3. Glucagon was infused either through the artery or the portal vein and hepatic vein, respectively, to a submaximally effective ''calculated'' sinusoidal concentration after mixing of 0.1 nmol/L. During orthograde perfusions, arterial and portal glucagon caused the same increases in glucose output. Yet during retrograde perfusions, hepatovenous glucagon elicited metabolic alterations equal to those in orthograde perfusions, whereas arterial glucagon effected changes strongly reduced to between 10\% and 50\%. Arterially infused trypan blue was distributed homogeneously in the parenchyma during orthograde perfusions, whereas it reached clearly smaller areas of parenchyma during retrograde perfusions. Finally, arterially applied acridine orange was taken up by all periportal hepatocytes in the proximal half of the acinus during orthograde perfusions but only by a much smaller portion of periportal cells in the proximal third of the acinus during retrograde perfusions. These findings suggest that in rat liver, the hepatic artery and the portal vein mix before and within the first third of the sinusoids, rather than in the middle or even last third.}, language = {en} } @misc{PueschelJungermann1994, author = {P{\"u}schel, Gerhard Paul and Jungermann, Kurt}, title = {Integration of function in the hepatic acinus : intercellular communication in neural and humoral control of liver metabolism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51279}, year = {1994}, abstract = {Content: Architecture of the liver acinus Functional zonation of the liver acinus Topological organization of metabollc regulation in the acinus Topological organization of defense and organ structure regulation in the acinus}, language = {de} } @misc{GardemannPueschelJungermann1992, author = {Gardemann, Andreas and P{\"u}schel, Gerhard Paul and Jungermann, Kurt}, title = {Nervous control of liver metabolism and hemodynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51346}, year = {1992}, abstract = {Content: Anatomy of hepatic innervation In vivo studies on the role of hepatic nerves Effects of hepatic nerves in isolated perfused liver Mechanism of action of sympathetic hepatic nerves}, language = {en} } @misc{SchaeferKakularamReischetal.2022, author = {Sch{\"a}fer, Marj{\"a}nn Helena and Kakularam, Kumar Reddy and Reisch, Florian and Rothe, Michael and Stehling, Sabine and Heydeck, Dagmar and P{\"u}schel, Gerhard Paul and Kuhn, Hartmut}, title = {Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1295}, issn = {1866-8372}, doi = {10.25932/publishup-57649}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576491}, pages = {22}, year = {2022}, abstract = {Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.}, language = {en} }