@misc{HischeLarhlimiSchwarzetal.2012, author = {Hische, Manuela and Larhlimi, Abdelhalim and Schwarz, Franziska and Fischer-Rosinsk{\´y}, Antje and Bobbert, Thomas and Assmann, Anke and Catchpole, Gareth S. and Pfeiffer, Andreas F. H. and Willmitzer, Lothar and Selbig, Joachim and Spranger, Joachim}, title = {A distinct metabolic signature predictsdevelopment of fasting plasma glucose}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {850}, issn = {1866-8372}, doi = {10.25932/publishup-42740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427400}, pages = {12}, year = {2012}, abstract = {Background High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called 'omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods. Methods We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort. Results We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis. Conclusions We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods.}, language = {en} } @article{JuerchottGuoCatchpoleetal.2011, author = {Juerchott, Kathrin and Guo, Ke-Tai and Catchpole, Gareth and Feher, Kristen and Willmitzer, Lothar and Schichor, Christian and Selbig, Joachim}, title = {Comparison of metabolite profiles in U87 glioma cells and mesenchymal stem cells}, series = {Biosystems : journal of biological and information processing sciences}, volume = {105}, journal = {Biosystems : journal of biological and information processing sciences}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2011.05.005}, pages = {130 -- 139}, year = {2011}, abstract = {Gas chromatography-mass spectrometry (GC-MS) profiles were generated from U87 glioma cells and human mesenchymal stem cells (hMSC). 37 metabolites representing glycolysis intermediates, TCA cycle metabolites, amino acids and lipids were selected for a detailed analysis. The concentrations of these. metabolites were compared and Pearson correlation coefficients were used to calculate the relationship between pairs of metabolites. Metabolite profiles and correlation patterns differ significantly between the two cell lines. These profiles can be considered as a signature of the underlying biochemical system and provide snap-shots of the metabolism in mesenchymal stem cells and tumor cells.}, language = {en} } @article{CatchpolePlatzerWeikertetal.2011, author = {Catchpole, Gareth and Platzer, Alexander and Weikert, Cornelia and Kempkensteffen, Carsten and Johannsen, Manfred and Krause, Hans and Jung, Klaus and Miller, Kurt and Willmitzer, Lothar and Selbig, Joachim and Weikert, Steffen}, title = {Metabolic profiling reveals key metabolic features of renal cell carcinoma}, series = {Journal of cellular and molecular medicine : a journal of translational medicine}, volume = {15}, journal = {Journal of cellular and molecular medicine : a journal of translational medicine}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1582-1838}, doi = {10.1111/j.1582-4934.2009.00939.x}, pages = {109 -- 118}, year = {2011}, abstract = {Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. alpha-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5\% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.}, language = {en} } @misc{SzymanskiJozefczukNikoloskietal.2009, author = {Szymanski, Jedrzej and Jozefczuk, Szymon and Nikoloski, Zoran and Selbig, Joachim and Nikiforova, Victoria and Catchpole, Gareth and Willmitzer, Lothar}, title = {Stability of metabolic correlations under changing environmental conditions in Escherichia coli : a systems approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45253}, year = {2009}, abstract = {Background: Biological systems adapt to changing environments by reorganizing their cellula r and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underl ying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic conditiondependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple ob servation s about the changes of metabolic concentrations. The approach was tested with Escherichia colias a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diau xie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical path ways, and (3) ind ependently of the response scale, based on their importance in the reorganization of the cor relation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-ba sed approach does not rely on major changes in concentration to identify metabolites important for st ress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches.}, language = {en} }