@article{StruszczykLothKoehleretal.1998, author = {Struszczyk, Marcin Henryk and Loth, Fritz and K{\"o}hler, L. A. and Peter, Martin G.}, title = {Characterization of chitosan}, year = {1998}, language = {en} } @article{StruszczykLothPeter1998, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Analysis of deacetylation deree in chitosans from various sources}, year = {1998}, language = {en} } @article{StruszczykLothPeter1998, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Calibration of methods for the determination of the degree of decatetylation of chitosan}, year = {1998}, language = {en} } @article{RatajskaStruszczykBoryniecetal.1997, author = {Ratajska, M. and Struszczyk, Marcin Henryk and Boryniec, Stefan and Peter, Martin G. and Loth, Fritz}, title = {The degree of acetylation of chitosan : optimization of the IR Method}, year = {1997}, language = {en} } @article{StruszczykRatajskaBoryniecetal.1997, author = {Struszczyk, Marcin Henryk and Ratajska, M. and Boryniec, Stefan and Peter, Martin G. and Loth, Fritz}, title = {The determination of the degree of N-acetylation of chitosan}, year = {1997}, language = {en} } @article{CandanKoralayTopuzetal.2016, author = {Candan, O. and Koralay, O. E. and Topuz, G. and Oberh{\"a}nsli, Roland and Fritz, H. and Collins, A. S. and Chen, F.}, title = {Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {34}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2015.02.015}, pages = {158 -- 173}, year = {2016}, abstract = {Numerous (meta-)gabbroic dikes or stocks occur within the latest Neoproterozoic-early Cambrian series of the Menderes Massif (Anatolide-Tauride Block, western Turkey). These well-preserved rocks were locally converted into eclogitic metagabbros and garnet amphibolites along the contacts or shear zones. Both bulk-rock composition and compositions of igneous clinopyroxenes suggest continental tholeiitic affinity. U-Pb dating of igneous zircons from gabbroic rocks yielded a mean age of 563 +/- 1 Ma (2 sigma), indicating emplacement during the latest Neoproterozoic (Ediacaran). On the other hand, rims of zircons from eclogitic metagabbro gave 535 +/- 3 Ma (2 sigma) (early Cambrian), in addition to 558 +/- 3 Ma (2 sigma) obtained from the igneous core of zircons. These ages are interpreted as the time of high-P metamorphism and crystallization age of gabbroic protolith, respectively. Given the estimated paleogeographic position of the Anatolide-Tauride Block during the late Neoproterozoic and early Cambrian, this orogenic event can be spatially and temporally related to the northward continuity of 600-500 Ma orogenic event (Malagasy/Kuunga orogeny) extending from western margin of India, Madagascar, via Arabia up to northern margin of Gondwana beneath thick Phanerozoic cover series in Arabian Peninsula. Therefore, the high-P evolution of the basement of the Menderes Massif and associated basic intrusions can be interpreted to mark the latest stages of consumption of the basin/oceanic branches and final amalgamation of the Gondwana during the late Neoproterozoic-early Cambrian around the Arabian region. (C) 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{StruszczykLothPospiesznyetal.2001, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Pospieszny, Henryk and Peter, Martin G.}, title = {Biodegradation of films and paper sheets containing chitosan}, year = {2001}, language = {en} } @article{StruszczykLothPeter2000, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Properties of microcrystalline chitosan gel-like dispersion and formed films}, year = {2000}, language = {en} } @article{KumkeOhlenbuschFrimmel2000, author = {Kumke, Michael Uwe and Ohlenbusch, G. and Frimmel, Fritz Hartmann}, title = {Sorption of phenols to dissolved organic matter investigaded by solid phase micriextrakrion}, year = {2000}, language = {en} } @article{StruszczykLothPeter1999, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Preparation of paper sheets containing microcrystalline chitosan}, isbn = {3-9806494-5-8}, year = {1999}, language = {en} } @article{StruszczykLothPeter1999, author = {Struszczyk, Marcin Henryk and Loth, Fritz and Peter, Martin G.}, title = {Method of microcrystalline chitosan-protein films preparation}, year = {1999}, language = {en} } @misc{HonnenWellenbergWeidesetal.2018, author = {Honnen, S. and Wellenberg, Anna and Weides, L. and Bornhorst, Julia and Crone, B. and Karst, U. and Fritz, G.}, title = {Identification of potent drug candidates for the prevention of cisplatin-induced neurotoxicity in the model organism C. elegans}, series = {Naunyn-Schmiedeberg's archives of pharmacology}, volume = {391}, journal = {Naunyn-Schmiedeberg's archives of pharmacology}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, doi = {10.1007/s00210-018-1477-5}, pages = {S4 -- S4}, year = {2018}, language = {en} } @misc{WellenbergWeidesBornhorstetal.2019, author = {Wellenberg, Anna and Weides, L. and Bornhorst, Julia and Crone, Barbara and Karst, U. and Fritz, G. and Honnen, S.}, title = {Molecular and electrophysiological analysis of platinum-induced neurotoxicity using the model organism C. elegans}, series = {Naunyn-Schmiedeberg's archives of pharmacology}, volume = {392}, journal = {Naunyn-Schmiedeberg's archives of pharmacology}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, doi = {10.1007/s00210-019-01621-6}, pages = {S63 -- S63}, year = {2019}, language = {en} } @article{deVeraBoettgerdelaTorreNoetzeletal.2012, author = {de Vera, Jean-Pierre Paul and B{\"o}ttger, Ute and de la Torre N{\"o}tzel, Rosa and Sanchez, Francisco J. and Grunow, Dana and Schmitz, Nicole and Lange, Caroline and H{\"u}bers, Heinz-Wilhelm and Billi, Daniela and Baque, Mickael and Rettberg, Petra and Rabbow, Elke and Reitz, G{\"u}nther and Berger, Thomas and M{\"o}ller, Ralf and Bohmeier, Maria and Horneck, Gerda and Westall, Frances and J{\"a}nchen, Jochen and Fritz, J{\"o}rg and Meyer, Cornelia and Onofri, Silvano and Selbmann, Laura and Zucconi, Laura and Kozyrovska, Natalia and Leya, Thomas and Foing, Bernard and Demets, Rene and Cockell, Charles S. and Bryce, Casey and Wagner, Dirk and Serrano, Paloma and Edwards, Howell G. M. and Joshi, Jasmin Radha and Huwe, Bj{\"o}rn and Ehrenfreund, Pascale and Elsaesser, Andreas and Ott, Sieglinde and Meessen, Joachim and Feyh, Nina and Szewzyk, Ulrich and Jaumann, Ralf and Spohn, Tilman}, title = {Supporting Mars exploration BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology}, series = {Planetary and space science}, volume = {74}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2012.06.010}, pages = {103 -- 110}, year = {2012}, abstract = {The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} }