@article{MorrisBohdanWeidletal.2023, author = {Morris, Paul J. and Bohdan, Artem and Weidl, Martin S. and Tsirou, Michelle and Fulat, Karol and Pohl, Martin}, title = {Pre-acceleration in the electron foreshock. II. oblique whistler waves}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {944}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/acaec8}, pages = {12}, year = {2023}, abstract = {Thermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate with electrons that have been reflected at the shock. We show that they can scatter, or even trap, reflected electrons, confining around 0.8\% of the total upstream electron population to the region close to the shock where they can undergo substantial pre-acceleration. This acceleration process is similar to, yet approximately three times more efficient than, stochastic shock drift acceleration.}, language = {en} } @phdthesis{Fulat2024, author = {Fulat, Karol}, title = {Electron acceleration at quasi-perpendicular shocks in supernova remnants}, doi = {10.25932/publishup-65136}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-651365}, school = {Universit{\"a}t Potsdam}, pages = {vi, 94}, year = {2024}, abstract = {Astrophysical shocks, driven by explosive events such as supernovae, efficiently accelerate charged particles to relativistic energies. The majority of these shocks occur in collisionless plasmas where the energy transfer is dominated by particle-wave interactions.Strong nonrelativistic shocks found in supernova remnants are plausible sites of galactic cosmic ray production, and the observed emission indicates the presence of nonthermal electrons. To participate in the primary mechanism of energy gain - Diffusive Shock Acceleration - electrons must have a highly suprathermal energy, implying a need for very efficient pre-acceleration. This poorly understood aspect of the shock acceleration theory is known as the electron injection problem. Studying electron-scale phenomena requires the use of fully kinetic particle-in-cell (PIC) simulations, which describe collisionless plasma from first principles. Most published studies consider a homogenous upstream medium, but turbulence is ubiquitous in astrophysical environments and is typically driven at magnetohydrodynamic scales, cascading down to kinetic scales. For the first time, I investigate how preexisting turbulence affects electron acceleration at nonrelativistic shocks using the fully kinetic approach. To accomplish this, I developed a novel simulation framework that allows the study of shocks propagating in turbulent media. It involves simulating slabs of turbulent plasma separately, which are further continuously inserted into a shock simulation. This demands matching of the plasma slabs at the interface. A new procedure of matching electromagnetic fields and currents prevents numerical transients, and the plasma evolves self-consistently. The versatility of this framework has the potential to render simulations more consistent with turbulent systems in various astrophysical environments. In this Thesis, I present the results of 2D3V PIC simulations of high-Mach-number nonrelativistic shocks with preexisting compressive turbulence in an electron-ion plasma. The chosen amplitudes of the density fluctuations (\$\lesssim15\\%\$) concord with \textit{in situ} measurements in the heliosphere and the local interstellar medium. I explored how these fluctuations impact the dynamics of upstream electrons, the driving of the plasma instabilities, electron heating and acceleration. My results indicate that while the presence of the turbulence enhances variations in the upstream magnetic field, their levels remain too low to influence the behavior of electrons at perpendicular shocks significantly. However, the situation is different at oblique shocks. The external magnetic field inclined at an angle between \$50^\circ \lesssim \theta_\text{Bn} \lesssim 75^\circ\$ relative to the shock normal allows the escape of fast electrons toward the upstream region. An extended electron foreshock region is formed, where these particles drive various instabilities. Results of an oblique shock with \$\theta_\text{Bn}=60^\circ\$ propagating in preexisting compressive turbulence show that the foreshock becomes significantly shorter, and the shock-reflected electrons have higher temperatures. Furthermore, the energy spectrum of downstream electrons shows a well-pronounced nonthermal tail that follows a power law with an index up to -2.3. The methods and results presented in this Thesis could serve as a starting point for more realistic modeling of interactions between shocks and turbulence in plasmas from first principles.}, language = {en} }