@article{GoebelHesemannWeberetal.2009, author = {Goebel, Ronald and Hesemann, Peter and Weber, Jens and Moeller, El{\´e}onore and Friedrich, Alwin and Beuermann, Sabine and Taubert, Andreas}, title = {Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids}, issn = {1463-9076}, doi = {10.1039/B821833a}, year = {2009}, abstract = {Mesoporous silica monoliths were prepared by the sol - gel technique and. lled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)(2)], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields.}, language = {en} } @article{GoebelHesemannFriedrichetal.2014, author = {Goebel, Ronald and Hesemann, Peter and Friedrich, Alwin and Rothe, Regina and Schlaad, Helmut and Taubert, Andreas}, title = {Modular thiol-ene chemistry approach towards mesoporous silica monoliths with organically modified pore walls}, series = {Chemistry - a European journal}, volume = {20}, journal = {Chemistry - a European journal}, number = {52}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201403982}, pages = {17579 -- 17589}, year = {2014}, abstract = {The surface modification of mesoporous silica monoliths through thiol-ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol-gel hydrolysis-poly-condensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3-mercaptopropyl) trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore-wall chemistries. Nitrogen sorption, small-angle X-ray scattering, solid-state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore-wall functionalization. This report demonstrates that thiol-ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces.}, language = {en} } @misc{GuentherMangelsdorfMitzneretal.2012, author = {G{\"u}nther, Oliver and Mangelsdorf, Birgit and Mitzner, Rolf and Loschelder, Wolfgang and Peter, Andreas and Eckert, Barbara and Mikelskis, Helmut and Klein, Alfred and Kirsch, B{\"a}rbel and Edelstein, Wolfgang and Thomas, Gr{\"u}newald and Thomas, P{\"o}sl and Wagner, Dieter and Winskowski, Friedrich and Schad, Martina and Frey, Anne and Bickenbach, Wulf and Madani, Roya and Olaka, Lydia}, title = {Portal alumni}, series = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, journal = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, number = {9}, organization = {Stabsstelle Studierendenmarketing/Alumniprogramm Im Auftrag der Pr{\"a}sidentin der Universit{\"a}t Potsdam}, issn = {1613-2343}, doi = {10.25932/publishup-44494}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444943}, pages = {60}, year = {2012}, abstract = {Das zur{\"u}ckliegende Jahr stand an der Universit{\"a}t Potsdam auch im Zeichen des zwanzigj{\"a}hrigen Jubil{\"a}ums der Hochschule. Am 15. Juli 1991, wurde sie gegr{\"u}ndet und w{\"a}hrend einer Festwoche feierten Professorinnen und Professoren, Mitarbeiterinnen, Mitarbeiter und Studierende dieses Jubil{\"a}um geb{\"u}hrend. Seit der Gr{\"u}ndung der gr{\"o}ßten brandenburgischen Hochschule sind wissenschaftliches Renommee, Ansehen und Attraktivit{\"a}t stetig gewachsen. Gerade in den letzten Jahren hat sie ihr Profil gesch{\"a}rft. Vor allem die Kognitions-, die Geo- und Biowissenschaften sind hier zu nennen. Aber auch die Lehrerbildung besitzt einen hohen Stellenwert. International anerkannte Forschungsbereiche, Wissenschaftspreise, eine erfolgreiche Drittmittelbilanz und nicht zuletzt die bauliche Entwicklung an allen drei Standorten sind sichtbare Indikatoren f{\"u}r die erfolgreiche Entwicklung, die die Universit{\"a}t Potsdam in den letzten zwei Jahrzehnten durchlaufen hat. Die drei ehemaligen Pr{\"a}sidenten sowie verschiedene andere Protagonisten werfen in dieser Ausgabe der Portal Alumni einen Blick auf unterschiedliche Aspekte der zur{\"u}ckliegenden Entwicklung der Universit{\"a}t. Vom Erfolg der Universit{\"a}t zeugt auch die wachsende Zahl der Absolventinnen und Absolventen, die die Universit{\"a}t verlassen. Portal Alumni stellt in der vorliegenden Ausgabe deshalb Absolventen und deren universit{\"a}re und berufliche Lebenswege genauer vor und l{\"a}sst damit zugleich kaleidoskopartig 20 Jahre Studium an der Universit{\"a}t Potsdam Revue passieren.}, language = {de} } @incollection{LueckBalderjahnKammetal.2000, author = {L{\"u}ck, Erika and Balderjahn, Ingo and Kamm, Birgit and Greil, Holle and Wallschl{\"a}ger, Hans-Dieter and Jessel, Beate and B{\"o}ckmann, Christine and Oberh{\"a}nsli, Roland and Soyez, Konrad and Schmeer, Ernst and Blumenstein, Oswald and Berndt, Klaus-Peter and Edeling, Thomas and Friedrich, Sabine and Kaden, Klaus and Scheller, Frieder W. and Petersen, Hans-Georg and Asche, Hartmut and Bronstert, Axel and Giest, Hartmut and Gaedke, Ursula and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Jeltsch, Florian and J{\"a}nkel, Ralph and Gzik, Axel and Bork, Hans-Rudolf and Bork, Hans-Rudolf}, title = {Umweltforschung f{\"u}r das Land Brandenburg : Arbeitsgruppen und Professuren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3797}, publisher = {Universit{\"a}t Potsdam}, year = {2000}, language = {de} } @article{WojcinskiCasselFarrokhetal.2012, author = {Wojcinski, Sebastian and Cassel, Michael and Farrokh, Andre and Soliman, Amr A. and Hille, Ursula and Schmidt, Werner and Degenhardt, Friedrich and Hillemanns, Peter}, title = {Variations in the elasticity of breast tissue during the menstrual cycle determined by real-time sonoelastography}, series = {Journal of ultrasound in medicine}, volume = {31}, journal = {Journal of ultrasound in medicine}, number = {1}, publisher = {American Institute of Ultrasound in Medicine}, address = {Laurel}, issn = {0278-4297}, pages = {63 -- 72}, year = {2012}, abstract = {Objectives-The purpose of this study was to determine the dependence of breast tissue elasticity on the menstrual cycle of healthy volunteers by means of real-time sonoelastography. Methods-Twenty-two healthy volunteers (aged 18-33 years) were examined once weekly during two consecutive menstrual cycles using sonoelastography. Group 1 (n = 10) was not taking hormonal medication; group 2 (n = 12) was taking oral contraceptives. Results-The breast parenchyma appeared softer than the dermis and harder than the adipose tissue, and elasticity varied over the menstrual cycle and between groups. Group 1 (no hormone intake) showed continuously increasing elasticity with relatively soft breast parenchyma in the menstrual and follicular phases and harder parenchyma in the luteal phase (P = .012). Group 2 (oral contraceptives) showed no statistically significant changes in breast parenchymal elasticity according to sonoelastography. The parenchyma was generally softer in group 1 compared with group 2 throughout the menstrual cycle (P = .033). The dermis, the subcutaneous adipose tissue, and the pectoralis major muscle showed no changes in elasticity. Comparison of measurements made during the first and the second menstrual cycles showed similar patterns of elasticity in both groups. Conclusions-Sonoelastography is a reproducible method that can be used to determine the dependence of breast parenchyma elasticity on the menstrual cycle and on the intake of hormonal contraceptives.}, language = {en} } @article{CohenHershcovitchTarazetal.2023, author = {Cohen, Sarel and Hershcovitch, Moshik and Taraz, Martin and Kissig, Otto and Issac, Davis and Wood, Andrew and Waddington, Daniel and Chin, Peter and Friedrich, Tobias}, title = {Improved and optimized drug repurposing for the SARS-CoV-2 pandemic}, series = {PLoS one}, volume = {18}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0266572}, pages = {13}, year = {2023}, abstract = {The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the Dr-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the Dr-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware-we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.}, language = {en} }