@article{WiesnerBirkenfeldEngelietal.2010, author = {Wiesner, Stefan and Birkenfeld, Andreas L. and Engeli, Stefan and Haufe, Sven and Brechtel, Lars and Wein, J. and Hermsdorf, Mario and Karnahl, Brita and Berlan, Michel and Lafontan, Max and Sweep, Fred C. G. J. and Luft, Friedrich C. and Jordan, Jens}, title = {Neurohumoral and metabolic response to exercise in water}, issn = {0018-5043}, doi = {10.1055/s-0030-1248250}, year = {2010}, abstract = {Atrial natriuretic peptide (ANP) stimulates lipid mobilization and lipid oxidation in humans. The mechanism appears to promote lipid mobilization during exercise. We tested the hypothesis that water immersion augments exercise- induced ANP release and that the change in ANP availability is associated with increased lipid mobilization and lipid oxidation. In an open randomized and cross-over fashion we studied 17 men (age 31 +/- 3.6 years; body mass index 24 +/- 1.7 kg/m(2); body fat 17 +/- 6.7\%) on no medication. Subjects underwent two incremental exercise tests on a bicycle ergometer. One test was conducted on land and the other test during immersion in water up to the xiphoid process. In a subset (n = 7), we obtained electromyography recordings in the left leg. We monitored gas exchange, blood pressure, and heart rate. In addition, we obtained blood samples towards the end of each exercise step to determine ANP, norepinephrine, epinephrine, lactate, free fatty acids, insulin, and glucose concentrations. Heart rate, systolic blood pressure, and oxygen consumption at the anaerobic threshold and during peak exercise were similar on land and with exercise in water. The respiratory quotient was mildly reduced when subjects exercised in water. Glucose and lactate measurements were decreased whereas free fatty acid concentrations were increased with exercise in water. Water immersion attenuated epinephrine and norepinephrine and augmented ANP release during exercise. Even though water immersion blunts exercise-induced sympathoadrenal activation, lipid mobilization and lipid oxidation rate are maintained or even improved. The response may be explained by augmented ANP release.}, language = {en} } @article{SangoroIacobAgapovetal.2014, author = {Sangoro, Joshia R. and Iacob, C. and Agapov, A. L. and Wang, Yangyang and Berdzinski, Stefan and Rexhausen, Hans and Strehmel, Veronika and Friedrich, C. and Sokolov, A. P. and Kremer, F.}, title = {Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c3sm53202j}, pages = {3536 -- 3540}, year = {2014}, abstract = {Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL exceeds that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions especially at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed.}, language = {en} } @article{RiechelmanFohlmeisterKlugeetal.2019, author = {Riechelman, Dana F. C. and Fohlmeister, Jens Bernd and Kluge, Tobias and Jochum, Klaus Peter and Richter, Detlev K. and Deininger, Michael and Friedrich, Ronny and Frank, Norbert and Scholz, Denis}, title = {Evaluating the potential of tree-ring methodology for cross-dating of three annually laminated stalagmites from Zoolithencave (SE Germany)}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {52}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2019.04.001}, pages = {37 -- 50}, year = {2019}, abstract = {Three small stalagmites from Zoolithencave (southern Germany) show visible laminae, which consist of a clear and a brownish, pigmented layer pair. This potentially provides the opportunity to construct precise chronologies by counting annual laminae. The growth period of the three stalagmites was constrained by the C-14 bomb peak in the youngest part of all three stalagmites and C-14-dating of a piece of charcoal in the consolidated base part of stalagmite Zoo-rez-2. These data suggest an age of AD 1970 for the top laminae and a lower age limit of AD 1973-1682 or AD 1735-1778. Laminae were counted and their thickness determined on scanned thin sections of all stalagmites. On stalagmites Zoo-rez-1 and -2, three tracks were measured near the growth axes, each separated into three sections at prominent anchor laminae (I, II, III). Each section was replicated three times (a, b, c). For Zoo-rez-3, only one track was measured. The total number of laminae counted for Zoo-rez-1 ranges from 138 to 177, for Zoo-rez-2 from 119 to 145, and for Zoo-rez-3 from 159 to 166. The numbers agree well with the range constrained by the bomb peak and the age of the charcoal, which supports the annual origin of the laminae. The replicated measurements of the different tracks as well as the three different tracks on the stalagmites Zoo-rez-1 and-2 were cross-dated using the TSAP-Win (R) tree-ring software. This software is very useful for cross-dating because it enables to insert or delete missing or false laminae as well as identifying common pattern by shifting the series back and forth in time. However, visual inspection of the thin sections was necessary to confirm detection of missing or false laminae by TSAP-Win (R). For all three Zoo-rez speleothems, crossdating of the mean lamina thickness series was not possible due to a missing common pattern. The cross-dating procedure results in three refined chronologies for the three Zoo-rez stalagmites of ranging from AD 1821-1970 (Zoo-rez-1), AD 1835-1970 (Zoo-rez-2), and AD 1808-1970 (Zoo-rez-3).}, language = {en} } @article{EngeliLehmannKaminskietal.2014, author = {Engeli, Stefan and Lehmann, Anne-Christin and Kaminski, Jana and Haas, Verena and Janke, Urgen and Janke, J{\"u}rgen and Zoerner, Alexander A. and Luft, Friedrich C. and Tsikas, Dimitrios and Jordan, Jens}, title = {Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects}, series = {Obesity}, volume = {22}, journal = {Obesity}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1930-7381}, doi = {10.1002/oby.20728}, pages = {E70 -- E76}, year = {2014}, abstract = {Objective: Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human. Methods: Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal- weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR. Results: Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-alpha mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obese subjects, but the diets had no influence. In contrast, the HFD produced pronounced reductions in skeletal muscle CB1-R and MAGL mRNA expression, whereas obesity did not affect muscular gene expression. Conclusions: Weight-neutral changes in dietary fat intake cannot explain excessive endocannabinoid availability in human obesity. Obesity and dietary fat intake affect ECS gene expression in a tissue-specific manner.}, language = {en} } @article{BrauneGrossWalteretal.2016, author = {Braune, Steffen and Gross, M. and Walter, M. and Zhou, Shengqiang and Dietze, Siegfried and Rutschow, S. and Lendlein, Andreas and Tschoepe, C. and Jung, Friedrich}, title = {Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials}, series = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, volume = {104}, journal = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1552-4973}, doi = {10.1002/jbm.b.33366}, pages = {210 -- 217}, year = {2016}, abstract = {On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet—indicating the spreading and activation of the platelets—was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials.}, language = {en} } @article{ZhuangSchellingStangletal.2000, author = {Zhuang, Y. and Schelling, Christoph and Stangl, Jochen and Penn, C. and Senz, S. and Sch{\"a}ffler, Friedrich and Roche, T. and Daniel, A. and Grenzer, J{\"o}rg and Pietsch, Ullrich and Bauer, G{\"u}nther}, title = {Structural and optical properties of Si/Si{1-x}Ge{x} wires}, year = {2000}, language = {en} } @phdthesis{AlbrechtBehrmannBocketal.1999, author = {Albrecht, Clemens and Behrmann, G{\"u}nter C. and Bock, Michael and Tenbruck, Friedrich H. and Homann, Harald}, title = {Die intellektuelle Gr{\"u}ndung der Bundesrepublik : eine Wirkungsgeschichte der Frankfurter Schule}, publisher = {Campus Verl.}, address = {Frankfurt}, isbn = {3-593-36214-7}, pages = {649 S.}, year = {1999}, language = {de} } @article{KathreinKipnusuKremeretal.2015, author = {Kathrein, Christine C. and Kipnusu, Wycliffe K. and Kremer, Friedrich and B{\"o}ker, Alexander}, title = {Birefringence Analysis of the Effect of Electric Fields on the Order-Disorder Transition Temperature of Lamellae Forming Block Copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00512}, pages = {3354 -- 3359}, year = {2015}, abstract = {A detailed birefringence analysis of the effect of strong dc electric fields on the order-disorder transition temperature (T-ODT) of lamella forming block copolymers is reported. The setup presented here enabled the measurement of the T-ODT with high temperature resolution while the birefringence measurements were nondestructive and straightforward compared to alternative methods. A downward shift in the transition temperature was found for all samples upon application of the electric field. The data indicate that the dominating parameter that evokes the mixing of block copolymers when exposed to electric fields is the difference in dielectric permittivity Delta epsilon between the block copolymer constituents. The extent to which the T-ODT is shifted is furthermore influenced by the degree of polymerization N. Shifts in the transition temperature of up to 7 degrees C were found upon application of an electric field of 5 kV/mm.}, language = {en} } @book{RanaMohapatraSidorovaetal.2022, author = {Rana, Kaushik and Mohapatra, Durga Prasad and Sidorova, Julia and Lundberg, Lars and Sk{\"o}ld, Lars and Lopes Grim, Lu{\´i}s Fernando and Sampaio Gradvohl, Andr{\´e} Leon and Cremerius, Jonas and Siegert, Simon and Weltzien, Anton von and Baldi, Annika and Klessascheck, Finn and Kalancha, Svitlana and Lichtenstein, Tom and Shaabani, Nuhad and Meinel, Christoph and Friedrich, Tobias and Lenzner, Pascal and Schumann, David and Wiese, Ingmar and Sarna, Nicole and Wiese, Lena and Tashkandi, Araek Sami and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Schmidt, Christopher and H{\"u}gle, Johannes and Horschig, Siegfried and Uflacker, Matthias and Najafi, Pejman and Sapegin, Andrey and Cheng, Feng and Stojanovic, Dragan and Stojnev Ilić, Aleksandra and Djordjevic, Igor and Stojanovic, Natalija and Predic, Bratislav and Gonz{\´a}lez-Jim{\´e}nez, Mario and de Lara, Juan and Mischkewitz, Sven and Kainz, Bernhard and van Hoorn, Andr{\´e} and Ferme, Vincenzo and Schulz, Henning and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Fabian, Benjamin and Ermakova, Tatiana and Kelkel, Stefan and Baumann, Annika and Morgenstern, Laura and Plauth, Max and Eberhard, Felix and Wolff, Felix and Polze, Andreas and Cech, Tim and Danz, Noel and Noack, Nele Sina and Pirl, Lukas and Beilharz, Jossekin Jakob and De Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and Juiz, Carlos and Bermejo, Belen and M{\"u}hle, Alexander and Gr{\"u}ner, Andreas and Saxena, Vageesh and Gayvoronskaya, Tatiana and Weyand, Christopher and Krause, Mirko and Frank, Markus and Bischoff, Sebastian and Behrens, Freya and R{\"u}ckin, Julius and Ziegler, Adrian and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Sz{\´a}rnyas, G{\´a}bor and Marton, J{\´o}zsef and Maginecz, J{\´a}nos and Varr{\´o}, D{\´a}niel and Antal, J{\´a}nos Benjamin}, title = {HPI Future SOC Lab - Proceedings 2018}, number = {151}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-547-7}, issn = {1613-5652}, doi = {10.25932/publishup-56371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563712}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 277}, year = {2022}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.}, language = {en} } @book{ZhangPlauthEberhardtetal.2020, author = {Zhang, Shuhao and Plauth, Max and Eberhardt, Felix and Polze, Andreas and Lehmann, Jens and Sejdiu, Gezim and Jabeen, Hajira and Servadei, Lorenzo and M{\"o}stl, Christian and B{\"a}r, Florian and Netzeband, Andr{\´e} and Schmidt, Rainer and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Sapegin, Andrey and Jaeger, David and Cheng, Feng and Meinel, Christoph and Friedrich, Tobias and Rothenberger, Ralf and Sutton, Andrew M. and Sidorova, Julia A. and Lundberg, Lars and Rosander, Oliver and Sk{\"o}ld, Lars and Di Varano, Igor and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Fabian, Benjamin and Baumann, Annika and Ermakova, Tatiana and Kelkel, Stefan and Choudhary, Yash and Cooray, Thilini and Rodr{\´i}guez, Jorge and Medina-P{\´e}rez, Miguel Angel and Trejo, Luis A. and Barrera-Animas, Ari Yair and Monroy-Borja, Ra{\´u}l and L{\´o}pez-Cuevas, Armando and Ram{\´i}rez-M{\´a}rquez, Jos{\´e} Emmanuel and Grohmann, Maria and Niederleithinger, Ernst and Podapati, Sasidhar and Schmidt, Christopher and Huegle, Johannes and de Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and van Hoorn, Andr{\´e} and Neumer, Tamas and Willnecker, Felix and Wilhelm, Mathias and Kuster, Bernhard}, title = {HPI Future SOC Lab - Proceedings 2017}, number = {130}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-475-3}, issn = {1613-5652}, doi = {10.25932/publishup-43310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433100}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 235}, year = {2020}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.}, language = {en} } @article{HempelSavenjieStolterfohtetal.2022, author = {Hempel, Hannes and Savenjie, Tom J. and Stolterfoht, Martin and Neu, Jens and Failla, Michele and Paingad, Vaisakh C. and Kužel, Petr and Heilweil, Edwin J. and Spies, Jacob A. and Schleuning, Markus and Zhao, Jiashang and Friedrich, Dennis and Schwarzburg, Klaus and Siebbeles, Laurens D. A. and D{\"o}rflinger, Patrick and Dyakonov, Vladimir and Katoh, Ryuzi and Hong, Min Ji and Labram, John G. and Monti, Maurizio and Butler-Caddle, Edward and Lloyd-Hughes, James and Taheri, Mohammad M. and Baxter, Jason B. and Magnanelli, Timothy J. and Luo, Simon and Cardon, Joseph M. and Ardo, Shane and Unold, Thomas}, title = {Predicting solar cell performance from terahertz and microwave spectroscopy}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {13}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202102776}, pages = {16}, year = {2022}, abstract = {Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current-voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter-laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)(3) halide perovskite thin-film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance-free JV-curve with a potential power conversion efficiency of 24.6 \%. For grainsizes above approximate to 20 nm, intra-grain charge transport is characterized by terahertz sum mobilities of approximate to 32 cm(2) V-1 s(-1). Drift-diffusion simulations indicate that these intra-grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best-realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented.}, language = {en} }