@article{GuskeJacobHirschnitzGarbersetal.2019, author = {Guske, Anna-Lena and Jacob, Klaus and Hirschnitz-Garbers, Martin and Peuckert, Jan and Schridde, Stefan and Stinner, Sven and Wolff, Franziska and Zahrnt, Dominik and Ziesemer, Florence}, title = {Stories that Change Our World?}, series = {Sustainability}, volume = {11}, journal = {Sustainability}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su11216163}, pages = {14}, year = {2019}, abstract = {Narratives are shaping our understanding of the world. They convey values and norms and point to desirable future developments. In this way, they justify and legitimize political actions and social practices. Once a narrative has emerged and this world view is supported by broad societal groups, narratives can provide powerful momentum to trigger innovation and changes in the course of action. Narratives, however, are not necessarily based on evidence and precise categories, but can instead be vague and ambiguous in order to be acceptable and attractive to different actors. However, the more open and inclusive a narrative is, the less impact can be expected. We investigate whether there is a shared narrative in research for the sustainable economy and how this can be evaluated in terms of its potential societal impact. The paper carves out the visions for the future that have been underlying the research projects conducted within the German Federal Ministry of Education and Research (BMBF) funding programme "The Sustainable Economy". It then analyzes whether these visions are compatible with narratives dominating societal discourse on the sustainable economy, and concludes how the use of visions and narratives in research can contribute to fostering societal transformations.}, language = {en} } @article{BeurskensSteinbergAntoniewiczetal.2016, author = {Beurskens, Rainer and Steinberg, Fabian and Antoniewicz, Franziska and Wolff, Wanja and Granacher, Urs}, title = {Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults}, series = {Neural plasticity}, journal = {Neural plasticity}, publisher = {Hindawi}, address = {London}, issn = {2090-5904}, doi = {10.1155/2016/8032180}, pages = {9}, year = {2016}, abstract = {Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single-and dual-task walking. We had 12 young adults (23.8 +/- 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements.}, language = {en} } @article{BeurskensSteinbergAntoniewiczetal.2016, author = {Beurskens, Rainer and Steinberg, Fabian and Antoniewicz, Franziska and Wolff, Wanja and Granacher, Urs}, title = {Neural Correlates of Dual-Task Walking}, series = {Neural plasticity}, volume = {2016}, journal = {Neural plasticity}, publisher = {Hindawi}, address = {New York}, doi = {10.1155/2016/8032180}, pages = {1 -- 9}, year = {2016}, abstract = {Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements.}, language = {en} } @misc{BeurskensSteinbergAntoniewiczetal.2016, author = {Beurskens, Rainer and Steinberg, Fabian and Antoniewicz, Franziska and Wolff, Wanja and Granacher, Urs}, title = {Neural Correlates of Dual-Task Walking}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90742}, pages = {1 -- 9}, year = {2016}, abstract = {Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements.}, language = {en} }