@article{DialloKuleshHolschneideretal.2006, author = {Diallo, Mamadou Sanou and Kulesh, Michail and Holschneider, Matthias and Scherbaum, Frank and Adler, Frank}, title = {Characterization of polarization attributes of seismic waves using continuous wavelet transforms}, issn = {0016-8033}, doi = {10.1190/1.2194511}, year = {2006}, abstract = {Complex-trace analysis is the method of choice for analyzing polarized data. Because particle motion can be represented by instantaneous attributes that show distinct features for waves of different polarization characteristics, it can be used to separate and characterize these waves. Traditional methods of complex-trace analysis only give the instantaneous attributes as a function of time or frequency. However. for transient wave types or seismic events that overlap in time, an estimate of the polarization parameters requires analysis of the time-frequency dependence of these attributes. We propose a method to map instantaneous polarization attributes of seismic signals in the wavelet domain and explicitly relate these attributes with the wavelet-transform coefficients of the analyzed signal. We compare our method with traditional complex-trace analysis using numerical examples. An advantage of our method is its possibility of performing the complete wave-mode separation/ filtering process in the wavelet domain and its ability to provide the frequency dependence of ellipticity, which contains important information on the subsurface structure. Furthermore, using 2-C synthetic and real seismic shot gathers, we show how to use the method to separate different wave types and identify zones of interfering wave modes}, language = {en} } @article{HaneyKummerowLangenbruchetal.2011, author = {Haney, Frank and Kummerow, J. and Langenbruch, C. and Dinske, C. and Shapiro, Serge A. and Scherbaum, Frank}, title = {Magnitude estimation for microseismicity induced during the KTB 2004/2005 injection experiment}, series = {Geophysics}, volume = {76}, journal = {Geophysics}, number = {6}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2011-0020.1}, pages = {WC47 -- WC53}, year = {2011}, abstract = {We determined the magnitudes of 2540 microseismic events measured at one single 3C borehole geophone at the German Deep Drilling Site (known by the German acronym, KTB) during the injection phase 2004/2005. For this task we developed a three-step approach. First, we estimated local magnitudes of 104 larger events with a standard method based on amplitude measurements at near-surface stations. Second, we investigated a series of parameters to characterize the size of these events using the seismograms of the borehole sensor, and we compared them statistically with the local magnitudes. Third, we extrapolated the regression curve to obtain the magnitudes of 2436 events that were only measured at the borehole geophone. This method improved the magnitude of completeness for the KTB data set by more than one order down to M = -2.75. The resulting b-value for all events was 0.78, which is similar to the b-value obtained from taking only the greater events with standard local magnitude estimation from near-surface stations, b = 0.86. The more complete magnitude catalog was required to study the magnitude distribution with time and to characterize the seismotectonic state of the KTB injection site. The event distribution with time was consistent with prediction from theory assuming pore pressure diffusion as the underlying mechanism to trigger the events. The value we obtained for the seismogenic index of -4 suggested that the seismic hazard potential at the KTB site is comparatively low.}, language = {en} } @article{ScherbaumKruegerWeber1997, author = {Scherbaum, Frank and Kr{\"u}ger, Frank and Weber, Michael H.}, title = {Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays}, year = {1997}, language = {en} } @article{BlaserKruegerOhrnbergeretal.2010, author = {Blaser, Lilian and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Scaling relations of earthquake source parameter estimates with special focus on subduction environment}, issn = {0037-1106}, doi = {10.1785/0120100111}, year = {2010}, abstract = {Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type.}, language = {en} } @article{BlaserOhrnbergerKruegeretal.2012, author = {Blaser, Lilian and Ohrnberger, Matthias and Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {Probabilistic tsunami threat assessment of 10 recent earthquakes offshore Sumatra}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05324.x}, pages = {1273 -- 1284}, year = {2012}, abstract = {Tsunami early warning (TEW) is a challenging task as a decision has to be made within few minutes on the basis of incomplete and error-prone data. Deterministic warning systems have difficulties in integrating and quantifying the intrinsic uncertainties. In contrast, probabilistic approaches provide a framework that handles uncertainties in a natural way. Recently, we have proposed a method using Bayesian networks (BNs) that takes into account the uncertainties of seismic source parameter estimates in TEW. In this follow-up study, the method is applied to 10 recent large earthquakes offshore Sumatra and tested for its performance. We have evaluated both the general model performance given the best knowledge we have today about the source parameters of the 10 events and the corresponding response on seismic source information evaluated in real-time. We find that the resulting site-specific warning level probabilities represent well the available tsunami wave measurements and observations. Difficulties occur in the real-time tsunami assessment if the moment magnitude estimate is severely over- or underestimated. In general, the probabilistic analysis reveals a considerably large range of uncertainties in the near-field TEW. By quantifying the uncertainties the BN analysis provides important additional information to a decision maker in a warning centre to deal with the complexity in TEW and to reason under uncertainty.}, language = {en} } @misc{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1320}, issn = {1866-8372}, doi = {10.25932/publishup-58882}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588828}, pages = {15}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @article{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Solid earth}, volume = {14}, journal = {Solid earth}, number = {2}, publisher = {Coepernicus Publ.}, address = {G{\"o}ttingen}, issn = {1869-9529}, doi = {10.5194/se-14-181-2023}, pages = {181 -- 195}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @article{KruegerScherbaum2014, author = {Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters}, series = {Bulletin of the Seismological Society of America}, volume = {104}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120130209}, pages = {576 -- 581}, year = {2014}, abstract = {The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s).}, language = {en} } @misc{RoesslerHiemerBachetal.2009, author = {R{\"o}ßler, Dirk and Hiemer, Stephan and Bach, Christoph and Delavaud, Elise and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Sauer, David and Scherbaum, Frank and Vollmer, Daniel}, title = {Small-aperture seismic array monitors Vogtland earthquake swarm in 2008/09}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29185}, year = {2009}, abstract = {The most recent intense earthquake swarm in the Vogtland lasted from 6 October 2008 until January 2009. Greatest magnitudes exceeded M3.5 several times in October making it the greatest swarm since 1985/86. In contrast to the swarms in 1985 and 2000, seismic moment release was concentrated near swarm onset. Focal area and temporal evolution are similar to the swarm in 2000. Work hypothysis: uprising upper-mantle fluids trigger swarm earthquakes at low stress level. To monitor the seismicity, the University of Potsdam operated a small aperture seismic array at 10 km epicentral distance between 18 October 2008 and 18 March 2009. Consisting of 12 seismic stations and 3 additional microphones, the array is capable of detecting earthquakes from larger to very low magnitudes (M<-1) as well as associated air waves. We use array techniques to determine properties of the incoming wavefield: noise, direct P and S waves, and converted phases.}, language = {en} } @article{BoraCottonScherbaumetal.2017, author = {Bora, Sanjay Singh and Cotton, Fabrice Pierre and Scherbaum, Frank and Edwards, Benjamin and Traversa, Paola}, title = {Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {15}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-017-0167-x}, pages = {4531 -- 4561}, year = {2017}, abstract = {We have analyzed the recently developed pan-European strong motion database, RESORCE-2012: spectral parameters, such as stress drop (stress parameter, Delta sigma), anelastic attenuation (Q), near surface attenuation (kappa(0)) and site amplification have been estimated from observed strong motion recordings. The selected dataset exhibits a bilinear distance-dependent Q model with average kappa(0) value 0.0308 s. Strong regional variations in inelastic attenuation were also observed: frequency-independent Q(0) of 1462 and 601 were estimated for Turkish and Italian data respectively. Due to the strong coupling between Q and kappa(0), the regional variations in Q have strong impact on the estimation of near surface attenuation kappa(0). kappa(0) was estimated as 0.0457 and 0.0261 s for Turkey and Italy respectively. Furthermore, a detailed analysis of the variability in estimated kappa(0) revealed significant within-station variability. The linear site amplification factors were constrained from residual analysis at each station and site-class type. Using the regional Q(0) model and a site-class specific kappa(0), seismic moments (M-0) and source corner frequencies f (c) were estimated from the site corrected empirical Fourier spectra. Delta sigma did not exhibit magnitude dependence. The median Delta sigma value was obtained as 5.75 and 5.65 MPa from inverted and database magnitudes respectively. A comparison of response spectra from the stochastic model (derived herein) with that from (regional) ground motion prediction equations (GMPEs) suggests that the presented seismological parameters can be used to represent the corresponding seismological attributes of the regional GMPEs in a host-to-target adjustment framework. The analysis presented herein can be considered as an update of that undertaken for the previous Euro-Mediterranean strong motion database presented by Edwards and Fah (Geophys J Int 194(2):1190-1202, 2013a).}, language = {en} }