@article{MeyerSchulzJeibmannetal.2014, author = {Meyer, S{\"o}ren and Schulz, J. and Jeibmann, A. and Taleshi, M. S. and Ebert, Franziska and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster}, series = {Metallomics : integrated biometal science}, volume = {6}, journal = {Metallomics : integrated biometal science}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c4mt00249k}, pages = {2010 -- 2014}, year = {2014}, abstract = {Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood.}, language = {en} } @article{MuellerFinkeEbertetal.2018, author = {M{\"u}ller, S. M. and Finke, Hannah and Ebert, Franziska and Kopp, Johannes Florian and Schumacher, Fabian and Kleuser, Burkhard and Francesconi, Kevin A. and Raber, G. and Schwerdtle, Tanja}, title = {Arsenic-containing hydrocarbons}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {92}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-018-2194-z}, pages = {1751 -- 1765}, year = {2018}, abstract = {Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids.}, language = {en} } @article{WittBornhorstMitzeetal.2017, author = {Witt, B. and Bornhorst, Julia and Mitze, H. and Ebert, Franziska and Meyer, S. and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures}, series = {Metallomics : integrated biometal science}, volume = {9}, journal = {Metallomics : integrated biometal science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c7mt00036g}, pages = {442 -- 446}, year = {2017}, abstract = {Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species.}, language = {en} }